injector design
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Alex R. Keller ◽  
Joel Otomize ◽  
Anil P. Nair ◽  
Nicolas Q. Minesi ◽  
Raymond M. Spearrin

Liquid atomization involves several mechanisms transforming a bulk of liquid into small droplets. The atomization efficiency usefulness is questionable considering its low values (0.01-1%). This work presents a general definition for atomization efficiency and explains why the Sauter mean diameter is the appropriate characteristic drop size (and no other mean diameter value). Finally, future directions are suggested for developing injector design tools from atomization efficiency.


Author(s):  
Anil P. Nair ◽  
David Morrow ◽  
Alex R. Keller ◽  
Alexander Lima ◽  
Daniel I. Pineda ◽  
...  

2021 ◽  
Author(s):  
Patrick Duchaine ◽  
Quentin Bouyssou ◽  
Stephane Pascaud ◽  
Gorka Exilard ◽  
Christophe Viguier

2021 ◽  
Author(s):  
Petro Junior Milan ◽  
Sudeepta Mondal ◽  
Roberto Torelli ◽  
Bethany Lusch ◽  
Romit Maulik ◽  
...  

2021 ◽  
Vol 143 (1) ◽  
Author(s):  
Andrea C. Zambon ◽  
Ashvin Hosangadi ◽  
Tim Weathers ◽  
Mark Winquist ◽  
Jeff Mays ◽  
...  

Abstract The challenge in the design of oxy-combustors for direct-fired supercritical CO2 (sCO2) cycles is in addressing disparate performance metrics and objectives. Key design parameters to consider include, among others, injector design for mixing and flame stability, split of recycled CO2 diluent between injectors and cooling films, target flame temperatures to control noncondensable products, and strategies to inject the diluent CO2 for film cooling and thermal control. In order to support novel oxy-combustor designs, a high-fidelity yet numerically efficient modeling framework based on the CRUNCH CFD® flow solver is presented, featuring key physics-based submodels relevant in this regime. For computational efficiency in modeling large kinetic sets, a flamelet/progress variable (FPV) based tabulated-chemistry approach is utilized featuring a three-stream extension to allow for the simulation of the CO2 film cooling stream in addition to the fuel and oxidizer streams. Finite rate chemistry effects are modeled in terms of multiple progress variables for the primary flame as well as for slower-evolving chemical species such as NOx and SOx contaminants. Real fluid effects are modeled using advanced equations of states. The predictive capabilities of this computationally tractable design support tool are demonstrated on a conceptual injector design for an oxy-combustor operating near 30 MPa. Simulations results provide quantitative feedback on the effectiveness of the film cooling as well as the level of contaminants (CO, NO, and N) in the exhaust due to impurities entering from the injectors. These results indicate that this framework would be a useful tool for refining and optimizing the oxy-combustor designs as well as risk mitigation analyses.


Author(s):  
Roberto Torelli ◽  
Yuanjiang Pei ◽  
Yu Zhang ◽  
Michael Traver ◽  
Sibendu Som

Abstract Measurements of fuel injectors via non-destructive X-ray techniques can provide unique insights about an injector’s internal surface. Using real measured geometry rather than nominal design geometry in computational fluid dynamics simulations can improve the accuracy of the numerical models dramatically. Recent work from the authors investigated the influence of the injector design on the internal flow development and occurrence of cavitation in a production multi-hole heavy-duty diesel injector operating with a straight-run gasoline for gasoline compression ignition (GCI) applications. This was achieved by evaluating a series of design parameters which showed that the intensity and duration of cavitation structures could be mitigated by acting on certain injector parameters such as K-factor, orifice inlet ellipticity, and sac-to-orifice radius of curvature. In the present work, the findings from the previous parametric study were combined to generate two attempts at improving the injector design and numerically evaluate their ability to suppress cavitation inside the orifices at three levels of injection pressure (1000, 1500, and 2500 bar), while operating with the same high-volatility gasoline fuel. Qualitative and quantitative analyses showed that, compared to the results obtained with the original X-ray scanned geometry, the improved designs were able to prevent fuel vapor formation at the two lowest injection pressures and avoid super-cavitation at the higher pressure. It was shown that these results were due to the strong influence that the orifice shape can have on the pressure and fuel vapor volume fraction distributions within the orifices. The informed design choices proposed in this study can therefore be vital for extending the durability and reliability of heavy-duty injectors for GCI applications.


Author(s):  
Andrea C. Zambon ◽  
Ashvin Hosangadi ◽  
Tim Weathers ◽  
Mark Winquist ◽  
Jeff Mays ◽  
...  

Abstract The challenge in the design of oxy-combustors for direct-fired supercritical CO2 (sCO2) cycles is in addressing disparate performance metrics and objectives. Key design parameters to consider include among others: injector design for mixing and flame stability, split of recycled CO2 diluent between injectors and cooling films, target flame temperatures to control non-condensable products, and strategies to inject the diluent CO2 for film cooling and thermal control. In order to support novel oxy-combustor designs, a high-fidelity yet numerically efficient modeling framework based on the CRUNCH CFD® flow solver is presented, featuring key physics-based sub-models relevant in this regime. For computational efficiency in modeling large kinetic sets, a flamelet/progress variable (FPV) based tabulatedchemistry approach is utilized featuring a three-stream extension to allow for the simulation of the CO2 film cooling stream in addition to the fuel and oxidizer streams. Finite-rate chemistry effects are modeled in terms of multiple progress variables for the primary flame as well as for slower-evolving chemical species such as NOx and SOx contaminants. Real fluid effects are modeled using advanced equations of states. The predictive capabilities of this computationally-tractable design support tool are demonstrated on a conceptual injector design for an oxy-combustor operating near 30 MPa. Simulations results provide quantitative feedback on the effectiveness of the film cooling as well as the level of contaminants (CO, NO, and N) in the exhaust due to impurities entering from the injectors. These results indicate that this framework would be a useful tool for refining and optimizing the oxy-combustor designs as well as risk mitigation analyses.


Sign in / Sign up

Export Citation Format

Share Document