shear mixing
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 56)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Tian Carey ◽  
Abdelnour Alhourani ◽  
Ruiyuan Tian ◽  
Shayan Seyedin ◽  
Adrees Arbab ◽  
...  

AbstractThe scalable production of two-dimensional (2D) materials is needed to accelerate their adoption to industry. In this work, we present a low-cost in-line and enclosed process of exfoliation based on high-shear mixing to create aqueous dispersions of few-layer graphene, on a large scale with a Yw ~ 100% yield by weight and throughput of ϕ ~ 8.3 g h−1. The in-line process minimises basal plane defects compared to traditional beaker-based shear mixing which we attribute to a reduced Reynolds number, Re ~ 105. We demonstrate highly conductive graphene material with conductivities as high as σ ∼ 1.5 × 104 S m−1 leading to sheet-resistances as low as Rs ∼ 2.6 Ω □−1 (t ∼ 25 μm). The process is ideal for formulating non-toxic, biocompatible and highly concentrated (c ∼ 100 mg ml−1) inks. We utilise the graphene inks for inkjet printable conductive interconnects and lithium-ion battery anode composites that demonstrate a low-rate lithium storage capability of 370 mAh g−1, close to the theoretical capacity of graphite. Finally, we demonstrate the biocompatibility of the graphene inks with human colon cells and human umbilical vein endothelial cells at high c ∼ 1 mg ml−1 facilitating a route for the use of the graphene inks in applications that require biocompatibility at high c such as electronic textiles.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 272-280
Author(s):  
Mahadeva Raju G. K ◽  
◽  
G. M Madhu ◽  
P Dinesh Sankar Reddy ◽  
Karthik K V ◽  
...  

Polymer nano composites using CuO as filler material and epoxy as matrix materials were prepared with different concentrations of CuO nano particles (1-5 wt%) by shear mixing followed by ultra-sonication process. The mechanical properties such as compressive strength and modulus were characterized using ASTM standards. It was found that the addition of CuO nano particles both compressive strength and modulus increased. As the CuO content increased in epoxy matrix the moduli values found to increase and were further analyzed using micromechanical models. The analytical models discussed correlate well with experimental values. The models discussed include Nicolais – Narkis, Turcsanyi, Piggot – Leidner and Nielsen models for the tensile strength values and for tensile modulus the models discussed include Halpin Tsai, Kerner and Sato – Furukawa models. These micromechanics models predict stiffness of nanocomposites with both aligned and randomly oriented fillers. XRD pattern revealed the interaction between CuO nanoparticles and epoxy matrix. The thermal decomposition behaviour revealed that there is an enhancement of onset of decomposition temperature by 28oC for 5wt% CuO filled epoxy than that of pure epoxy


Author(s):  
Saba Ayub ◽  
Beh Hoe Guan ◽  
Faiz Ahmad ◽  
Zaib Un Nisa

2021 ◽  
Vol 1192 (1) ◽  
pp. 012011
Author(s):  
B B Sedayu ◽  
D Fransiska ◽  
P Wullandari ◽  
T D Novianto ◽  
W T Handoyo ◽  
...  

Abstract In current investigation, various commercial nanoclays with different level of hydrophilicity i.e., hydrophilic bentonite (HB), cloisite 10A, and cloisite® 30B were incorporated to a hydrophilic semi-refined carrageenan (SRC) films to observe their presence in film matrix in regards with the final film’s properties. High shear mixing and sonication were applied to the film preparation to obtain high dispersion of nanoclays in the matrix. As expected, the hydrophilic clay showed better dispersion within the matrix as shown in Energy Dispersive X-Ray Spectroscopy (EDS) image. The more hydrophilic clay inclusion resulted in higher tensile strength, while the more hydrophobic resulted in higher stiffness of the films. The water vapour permeability was decreased in corresponded to the more hydrophobic clay incorporated, and the thermal properties of the films were overall enhanced by the nanoclays reinforcement. In general, nanoclays incorporation in SRC film improved the overall properties of the SRC film.


2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Gustavo Parreira Araújo ◽  
Felipe Terra Martins ◽  
Stephânia Fleury Taveira ◽  
Marcílio Cunha-Filho ◽  
Ricardo Neves Marreto

Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 77
Author(s):  
Omolade Ajayi ◽  
Aina Davies ◽  
Samiul Amin

The objective of this work was to carry out a comprehensive evaluation of the performance of a novel cationic amino lipid surfactant, Brassicyl Valinate Esylate (BVE), in contrast to conventional alkyl quaternary ammonium surfactants (quats), through a study of the effects of process mixing speed on its overall rheological, tribological and wet lubrication performance in comparison to BTAC and CTAC, two cationic surfactants widely used in cosmetics. The major cosmetic application of cationic surfactants is in the preparation of hair conditioners. Hence, this analysis was done firstly by conducting tensile combing tests to evaluate reduction in wet lubrication which translates to conditioning performance. The combing results serve as a testing metric that adequately corresponds to consumer perception of conditioned hair. To correlate this technically, yield stress measurements were conducted to establish rheologic profiles of the conditioner formulations, and in vitro tribological testing of the emulsion systems between two steel surfaces were done to technically simulate the spreading and rubbing of conditioner on the hair. The effect of processing conditions on the formulations was then evaluated. BVE was found to be an effective conditioning surfactant suitable as an eco-friendly replacement for BTAC and CTAC in hair conditioner formulations. The results showed that higher shear mixing rates during formulation lead to poorer performance effects evident through decreased yield stress values, lower percentage reduction in combing force and a higher coefficient of friction.


2021 ◽  
pp. 009524432110290
Author(s):  
Mukaddes Sevval Cetin ◽  
Ozan Toprakci ◽  
Omer Suat Taskin ◽  
Abdullah Aksu ◽  
Hatice Aylin Karahan Toprakci

This study focuses on the fabrication and characterization of vermiculite-filled flexible polymer composites. Exfoliated vermiculite was incorporated into triblock thermoplastic elastomer copolymer, styrene- b-(ethylene- co-butylene)- b-styrene (SEBS), at various levels from 1 to 15 wt% by a high shear mixer. The composite films were obtained by the combination of solvent casting and compression molding. The morphological, structural, thermal, and mechanical properties and contact angle of the composites were determined. Some micro-morphological differences were observed between the samples and the difference was assumed to be caused by high shear mixing and filler concentration. High shear mixing was found effective in terms of the detachment of vermiculite layers at all concentrations. However, at low filler loading, that behavior was more obvious. At 1 wt% filler concentration, mechanical properties increased that was probably caused by good filler-matrix interaction stemmed from smaller particle size. At higher vermiculite concentrations, fillers found to show agglomerations that led to a decrease in mechanical strength and strain at break. Elastic and secant modulus showed an increasing trend. Contact angle measurements were carried out to determine the oleophilic character of the samples. An increase in the vermiculite content resulted in higher oleophilic character and the lowest contact angle was obtained at 15 wt% VMT loading. In addition to these, thermal stability, thermal dimensional stability and flame retardancy were improved by the incorporation of VMT. 15 wt% vermiculite-filled sample showed the best performance in terms of thermal stability and flame retardancy.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2199
Author(s):  
Siyu Zhu ◽  
Chunlin Wu ◽  
Huiming Yin

Particle mixing process is critical for the design and quality control of concrete and composite production. This paper develops an algorithm to simulate the high-shear mixing process of a granular flow containing a high proportion of solid particles mixed in a liquid. DEM is employed to simulate solid particle interactions; whereas SPH is implemented to simulate the liquid particles. The two-way coupling force between SPH and DEM particles is used to evaluate the solid-liquid interaction of a multi-phase flow. Using Darcy’s Law, this paper evaluates the coupling force as a function of local mixture porosity. After the model is verified by two benchmark case studies, i.e., a solid particle moving in a liquid and fluid flowing through a porous medium, this method is applied to a high shear mixing problem of two types of solid particles mixed in a viscous liquid by a four-bladed mixer. A homogeneity metric is introduced to characterize the mixing quality of the particulate mixture. The virtual experiments with the present algorithm show that adding more liquid or increasing liquid viscosity slows down the mixing process for a high solid load mix. Although the solid particles can be mixed well eventually, the liquid distribution is not homogeneous, especially when the viscosity of liquid is low. The present SPH-DEM model is versatile and suitable for virtual experiments of particle mixing process with different blades, solid particle densities and sizes, and liquid binders, and thus can expedite the design and development of concrete materials and particulate composites.


Nano Express ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 010031
Author(s):  
Abhishek Sharma ◽  
Myneni Sukesh Babu ◽  
R Velmurugan ◽  
Takahiro Imai ◽  
R Sarathi

2021 ◽  
Vol 11 (5) ◽  
pp. 2075
Author(s):  
Massimiliano Dapporto ◽  
Davide Gardini ◽  
Anna Tampieri ◽  
Simone Sprio

Calcium phosphate cements (CPCs) have been extensively studied in last decades as nanostructured biomaterials for the regeneration of bone defects, both for dental and orthopedic applications. However, the precise control of their handling properties (setting time, viscosity, and injectability) still represents a remarkable challenge because a complicated adjustment of multiple correlated processing parameters is requested, including powder particle size and the chemical composition of solid and liquid components. This study proposes, for the first time, a multifactorial investigation about the effects of powder and liquid variation on the final performance of Sr-doped apatitic CPCs, based on the Design of Experiment approach. In addition, the effects of two mixing techniques, hand spatula (low-energy) and planetary shear mixing (high-energy), on viscosity and extrusion force were compared. This work aims to shed light on the various steps involved in the processing of CPCs, thus enabling a more precise and tailored design of the device, based on the clinical need.


Sign in / Sign up

Export Citation Format

Share Document