The effects of in-situ emulsion formation and superficial velocity on foam performance in high-permeability porous media

Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121575
Author(s):  
Alvinda Sri Hanamertani ◽  
Soheil Saraji ◽  
Mohammad Piri
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3328
Author(s):  
Pouya Mehrdel ◽  
Hamid Khosravi ◽  
Shadi Karimi ◽  
Joan Antoni López Martínez ◽  
Jasmina Casals-Terré

Microfluidic paper-based analytical devices (µPADs) are a promising technology to enable accurate and quantitative in situ assays. Paper’s inherent hydrophilicity drives the fluids without the need for external pressure sources. However, controlling the flow in the porous medium has remained a challenge. This study addresses this problem from the nature of the paper substrate and its design. A computational fluid dynamic model has been developed, which couples the characteristics of the porous media (fiber length, fiber diameter and porosity) to the fluidic performance of the diffusion-based µPAD sensor. The numerical results showed that for a given porous membrane, the diffusion, and therefore the sensor performance is affected not only by the substrate nature but also by the inlets’ orientation. Given a porous substrate, the optimum performance is achieved by the lowest inlets’ angle. A diffusion-based self-referencing colorimetric sensor was built and validated according to the design. The device is able to quantify the hydronium concentration in wines by comparison to 0.1–1.0 M tartaric acid solutions with a 41.3 mM limit of detection. This research showed that by proper adjustments even the simplest µPADs can be used in quantitative assays for agri-food applications.


2020 ◽  
Author(s):  
Alessio Scanziani ◽  
Abdulla Alhosani ◽  
Qingyang Lin ◽  
Catherine Spurin ◽  
Gaetano Garfi ◽  
...  

Author(s):  
Gennadiy Sandrakov ◽  
Andrii Hulianytskyi ◽  
Vladimir Semenov

Modeling of dynamic processes of diffusion and filtration of liquids in porous media are discussed. The media are formed by a large number of blocks with low permeability, and separated by a connected system of faults with high permeability. The modeling is based on solving initial boundary value problems for parabolic equations of diffusion and filtration in porous media. The structure of the media leads to the dependence of the equations on a small parameter. Assertions on the solvability and regularity of such problems and the corresponding homogenized convolution problems are considered. The statements are actual for the numerical solution of this problem with guaranteed accuracy that is necessary to model the considered processes.


2021 ◽  
pp. 1-13
Author(s):  
Melek Deniz Paker ◽  
Murat Cinar

Abstract A significant portion of world oil reserves reside in naturally fractured reservoirs and a considerable amount of these resources includes heavy oil and bitumen. Thermal enhanced oil recovery methods (EOR) are mostly applied in heavy oil reservoirs to improve oil recovery. In situ combustion (/SC) is one of the thermal EOR methods that could be applicable in a variety of reservoirs. Unlike steam, heat is generated in situ due to the injection of air or oxygen enriched air into a reservoir. Energy is provided by multi-step reactions between oxygen and the fuel at particular temperatures underground. This method upgrades the oil in situ while the heaviest fraction of the oil is burned during the process. The application of /SC in fractured reservoirs is challenging since the injected air would flow through the fracture and a small portion of oil in the/near fracture would react with the injected air. Only a few researchers have studied /SC in fractured or high permeability contrast systems experimentally. For in situ combustion to be applied in fractured systems in an efficient way, the underlying mechanism needs to be understood. In this study, the major focus is permeability variation that is the most prominent feature of fractured systems. The effect of orientation and width of the region with higher permeability on the sustainability of front propagation are studied. The contrast in permeability was experimentally simulated with sand of different particle size. These higher permeability regions are analogous to fractures within a naturally fractured rock. Several /SC tests with sand-pack were carried out to obtain a better understanding of the effect of horizontal vertical, and combined (both vertical and horizontal) orientation of the high permeability region with respect to airflow to investigate the conditions that are required for a self-sustained front propagation and to understand the fundamental behavior. Within the experimental conditions of the study, the test results showed that combustion front propagated faster in the higher permeability region. In addition, horizontal orientation almost had no effect on the sustainability of the front; however, it affected oxygen consumption, temperature, and velocity of the front. On the contrary, the vertical orientation of the higher permeability region had a profound effect on the sustainability of the combustion front. The combustion behavior was poorer for the tests with vertical orientation, yet the produced oil AP/ gravity was higher. Based on the experimental results a mechanism has been proposed to explain the behavior of combustion front in systems with high permeability contrast.


2007 ◽  
Vol 4 (6) ◽  
pp. 4175-4210
Author(s):  
M. Konz ◽  
P. Ackerer ◽  
E. Meier ◽  
P. Huggenberger ◽  
E. Zechner ◽  
...  

Abstract. In this study we describe and compare photometric and resistivity measurement methodologies to determine solute concentrations in porous media flow tank experiments. The first method is the photometric method, which directly relates digitally measured intensities of a tracer dye to concentrations without previously converting the intensities to optical densities. This enables an effective processing of a large amount of images to compute concentration time series at various points of the flow tank. Perturbations of the measurements are investigated and both lens flare effects and the image resolution turned out to be the major sources of error. An attached mask is able to minimize the lens flare effects. The second method for in situ measurement of salt concentrations in porous media experiments is the resistivity method. The resistivity measurement system uses two different input voltages at gilded electrode sticks to enable the measurement of salt concentrations from 0 to 300 g/l. Power laws are used to relate apparent resistivity values and salt concentrations. However, due to the unknown measurement volume of the electrodes, we consider the image analysis method more appropriate for intermediate scale laboratory benchmark experiments to evaluate numerical codes.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Chuan Lu ◽  
Wei Zhao ◽  
Yongge Liu ◽  
Xiaohu Dong

Oil-in-water (O/W) emulsions are expected to be formed in the process of surfactant flooding for heavy oil reservoirs in order to strengthen the fluidity of heavy oil and enhance oil recovery. However, there is still a lack of detailed understanding of mechanisms and effects involved in the flow of O/W emulsions in porous media. In this study, a pore-scale transparent model packed with glass beads was first used to investigate the transport and retention mechanisms of in situ generated O/W emulsions. Then, a double-sandpack model with different permeabilities was used to further study the effect of in situ formed O/W emulsions on the improvement of sweep efficiency and oil recovery. The pore-scale visualization experiment presented an in situ emulsification process. The in situ formed O/W emulsions could absorb to the surface of pore-throats, and plug pore-throats through mechanisms of capture-plugging (by a single emulsion droplet) and superposition-plugging or annulus-plugging (by multiple emulsion droplets). The double-sandpack experiments proved that the in situ formed O/W emulsion droplets were beneficial for the mobility control in the high permeability sandpack and the oil recovery enhancement in the low permeability sandpack. The size distribution of the produced emulsions proved that larger pressures were capable to displace larger O/W emulsion droplets out of the pore-throat and reduce their retention volumes.


2018 ◽  
Vol 344 ◽  
pp. 190-228
Author(s):  
Abdellatif Agouzal ◽  
Karam Allali ◽  
Siham Binna

2013 ◽  
Vol 48 (1) ◽  
pp. 542-549 ◽  
Author(s):  
George Redden ◽  
Don Fox ◽  
Chi Zhang ◽  
Yoshiko Fujita ◽  
Luanjing Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document