in situ biodegradation
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 12)

H-INDEX

27
(FIVE YEARS 4)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 192
Author(s):  
Artem Demenev ◽  
Nikolay Maksimovich ◽  
Vadim Khmurchik ◽  
Gennadiy Rogovskiy ◽  
Anatoliy Rogovskiy ◽  
...  

Contamination of groundwater by petroleum hydrocarbons is a widespread environmental problem in many regions. Contamination of unsaturated and saturated zones could also pose a significant risk to human health. The main purpose of the study was to assess the efficiency of biodegradation of total petroleum hydrocarbon (TPH) in situ, in an area with loam and sandy loam soils, and to identify features and characteristics related to groundwater treatment in an area with a persistent flow of pollutants. We used methods of biostimulation (oxygen as stimulatory supplement) and bioaugmentation to improve water quality. Oxygen was added to the groundwater by diffusion through silicone tubing. The efficiency of groundwater treatment was determined by detailed monitoring. Implementation of the applied measure resulted in an average reduction in TPH concentration of 73.1% compared with the initial average concentration (4.33 mg/L), and in the local area, TPH content was reduced by 95.5%. The authors hope that this paper will contribute to a better understanding of the topic of groundwater treatment by in situ biodegradation of TPH. Further studies on this topic are particularly needed to provide more data and details on the efficiency of groundwater treatment under adverse geological conditions.


2021 ◽  
Author(s):  
Qinggeer BORJIGIN ◽  
Bizhou ZHANG ◽  
Xiaofang Yu ◽  
Julin Gao ◽  
Xin ZHANG ◽  
...  

Abstract A lignocellulolytic microbial consortium holds promise for the in situ biodegradation of crop straw and the comprehensive and effective utilization of agricultural waste. In this study, we applied metagenomics technology to comprehensively explore the metabolic functional potential and taxonomic diversity of the microbial consortia CS (cultured on corn stover) and FP (cultured on filter paper).Analyses of the metagenomics taxonomic affiliation data showed considerable differences in the taxonomic composition and functional profile of the microbial consortia CS and FP. The microbial consortia CS primarily contained members from the genera Pseudomonas, Stenotrophomonas, Achromobacter, Dysgonomonas, Flavobacterium and Sphingobacterium, as well as Cellvibrio, Azospirillum, Pseudomonas, Dysgonomonas and Cellulomonas in FP. The COG and KEGG annotation analyses revealed considerable levels of diversity. Further analysis determined that the CS consortium had an increase in the acid and ester metabolism pathways, while carbohydrate metabolism was enriched in the FP consortium. Furthermore, a comparison against the CAZy database showed that the microbial consortia CS and FP contain a rich diversity of lignocellulose degrading families, in which GH5, GH6, GH9, GH10, GH11, GH26, GH42, and GH43 were enriched in the FP consortium, and GH44, GH28, GH2, and GH29 increased in the CS consortium. The degradative mechanism of lignocellulose metabolism by the two microbial consortia is similar, but the annotation of quantity of genes indicated that they are diverse and vary greatly. The lignocellulolytic microbial consortia cultured under different carbon conditions (CS and FP) differed substantially in their composition of the microbial community at the genus level. The changes in functional diversity were accompanied with variation in the composition of microorganisms, many of which are related to the degradation of lignocellulolytic materials. The genera Pseudomonas, Dysgonomonas and Sphingobacterium in CS and the genera Cellvibrio and Pseudomonas in FP exhibited a much wider distribution of lignocellulose degradative ability.


2020 ◽  
Vol 31 (3) ◽  
pp. 264-271
Author(s):  
Amanda Mahammad Mushashe ◽  
Isabelli Carolini Farias ◽  
Carla Castiglia Gonzaga ◽  
Leonardo Fernandes da Cunha ◽  
Jack Libório Ferracane ◽  
...  

Abstract The objective of this work was to evaluate the effects of in vitro and in situ biodegradation on the surface characteristics of two resin cements and a hybrid ceramic system. One hundred and eighty specimens (4X1.5mm) of each material (Maxcem Elite, NX3 Nexus and Vita Enamic) were made and randomly distributed in twelve groups (n=15) according to the material and biodegradation method. The specimens were then submitted to the following challenges: storage in distilled water 37 ºC for 24 h or 7 days, storage for 7 days, at 37 ºC, in stimulated saliva or in situ. The in situ stage corresponded to the preparation of 15 intraoral palatal devices, used for 7 days. Each device presented 3 niches, where a sample of each materials was accommodated. Specimens from both saliva and in situ groups suffered a cariogenic challenge, corresponding to the application of a solution of 20% of sucrose, 10 times throughout each day. After each biodegradation method, the surface roughness (Ra), Vickers hardness (VHN) and scanning electron microscopy (SEM) analyzes were performed. The data collected were evaluated by Levene test, two-way ANOVA and Tukey`s test (α=5%). The in situ challenge promoted the greater biodegradation, regardless of the material. Regarding the materials, the Vita Enamic VHN was negatively affected by all biodegradation methods and the Nexus NX3 presented better performance than the self-adhesive cement tested. Therefore, within the conditions of this work, it was concluded that in situ biodegradation can affect negatively the surface characteristics of indirect restorative materials.


2020 ◽  
Vol 258 ◽  
pp. 113710 ◽  
Author(s):  
Linbo Qin ◽  
Xinming Huang ◽  
Qiang Xue ◽  
Lei Liu ◽  
Yong Wan

2020 ◽  
Vol 105 ◽  
pp. 317-327 ◽  
Author(s):  
Linbo Qin ◽  
Zhe Xu ◽  
Lei Liu ◽  
Haijun Lu ◽  
Yong Wan ◽  
...  

2020 ◽  
Vol 384 ◽  
pp. 121271 ◽  
Author(s):  
Zhi Chen ◽  
Wenqi Zhao ◽  
Ruizhi Xing ◽  
Shengjia Xie ◽  
Xinggui Yang ◽  
...  

2019 ◽  
Vol 223 ◽  
pp. 103464 ◽  
Author(s):  
Francisco J. Barajas-Rodriguez ◽  
Lawrence C. Murdoch ◽  
Ronald W. Falta ◽  
David L. Freedman

Author(s):  
Jim Rawe ◽  
Evelyn Meagher-Hartzell

Sign in / Sign up

Export Citation Format

Share Document