scholarly journals Numerical analysis of a reactivity controlled compression ignition engine

Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121819
Author(s):  
Gonca Görmez ◽  
Bilge Albayrak Çeper
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4621
Author(s):  
P. A. Harari ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
T. M. Yunus Khan ◽  
Irfan Anjum Badruddin ◽  
...  

In the current work, an effort is made to study the influence of injection timing (IT) and injection duration (ID) of manifold injected fuels (MIF) in the reactivity controlled compression ignition (RCCI) engine. Compressed natural gas (CNG) and compressed biogas (CBG) are used as the MIF along with diesel and blends of Thevetia Peruviana methyl ester (TPME) are used as the direct injected fuels (DIF). The ITs of the MIF that were studied includes 45°ATDC, 50°ATDC, and 55°ATDC. Also, present study includes impact of various IDs of the MIF such as 3, 6, and 9 ms on RCCI mode of combustion. The complete experimental work is conducted at 75% of rated power. The results show that among the different ITs studied, the D+CNG mixture exhibits higher brake thermal efficiency (BTE), about 29.32% is observed at 50° ATDC IT, which is about 1.77, 3.58, 5.56, 7.51, and 8.54% higher than D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. The highest BTE, about 30.25%, is found for the D+CNG fuel combination at 6 ms ID, which is about 1.69, 3.48, 5.32%, 7.24, and 9.16% higher as compared with the D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. At all ITs and IDs, higher emissions of nitric oxide (NOx) along with lower emissions of smoke, carbon monoxide (CO), and hydrocarbon (HC) are found for D+CNG mixture as related to other fuel mixtures. At all ITs and IDs, D+CNG gives higher In-cylinder pressure (ICP) and heat release rate (HRR) as compared with other fuel combinations.


Fuel ◽  
2020 ◽  
Vol 281 ◽  
pp. 118751 ◽  
Author(s):  
Josimar Souza Rosa ◽  
Mario Eduardo Santos Martins ◽  
Giovani Dambros Telli ◽  
Carlos Roberto Altafini ◽  
Paulo Roberto Wander ◽  
...  

2019 ◽  
Vol 16 (3) ◽  
pp. 341-350 ◽  
Author(s):  
Hariram Venkatesan ◽  
Godwin John J. ◽  
Seralathan Sivamani ◽  
Micha Premkumar T.

Purpose The purpose this experimentation is to study the combustion characteristics of compression ignition engine fuelled with mineral diesel. The reason behind the numerical simulation is to validate the experimental results of the combustion characteristics. Design/methodology/approach The numerical analysis was carried out in this study using MATLAB Simulink, and the zero dimensional combustion model was applied to predict the combustion parameters such as in cylinder pressure, pressure rise rate and rate of heat release. Findings Incorporating the dynamic combustion duration with respect to variable engine load in the zero dimensional combustion model using MATLAB Simulink reduced the variation of experimental and numerical outputs between 5.5 and 6 per cent in this analysis. Research limitations/implications Validation of the experimental analysis is very limited. Investigations were performed using zero dimensional combustion model, which is the very appropriate for analysing the combustion characteristics. Originality/value Existing studies assumed that the combustion duration period as invariant in their numerical analysis, but with the real time scenario occurring in CI engine, that is not the case. In this analysis, mass fraction burnt considering the dynamic combustion duration was incorporated in the heat transfer model to reduce the error variation between experimental and numerical studies.


Sign in / Sign up

Export Citation Format

Share Document