Methane adsorption on shale under in situ conditions: Gas-in-place estimation considering in situ stress

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121991
Author(s):  
Feng Miao ◽  
Di Wu ◽  
Xueying Liu ◽  
Xiaochun Xiao ◽  
Wenbo Zhai ◽  
...  
2021 ◽  
Author(s):  
Vibhas J. Pandey

Abstract Acid fracturing is a preferred method of stimulating low permeability limestone formations throughout the world. The treatment consists of pumping alternating cycles of viscous pad and acid to promote differential etching, thereby creating a conductive acid-etched fracture. Acid-type, pad and acid volumes, and the injection rates in the designed pump schedule are based on treatment objectives, rock-types and in-situ conditions such as temperatures, in-situ stress, proximity to water-bearing layers, and others. During the acid fracturing treatment, the acid-rock interaction is often marked by signature pressure responses, that are a combined outcome of acid reaction kinetics, responses to changes in fluid viscosity and densities, fluid-frictional drop in narrow hydraulic fractures, and other such parameters. This paper focuses on interpretation of bottomhole pressures during acid fracturing treatment to separate these individual effects and determine the effectiveness of the treatment. Unlike propped fracturing treatments where most fracturing treatments result in net pressure gain, acid fracturing treatments seldom result in net pressure increase at the end of the treatment because the in-situ stresses are generally relieved during the rock-dissolution and fracture width creation process that results from acid-mineral reactions. Not only is the extent of stress relief evident from the difference in the start and the end of the treatment instantaneous shut-in pressures, the loss of stresses is also apparent during the treatment itself, especially in jobs where the treatment data is constantly monitored and evaluated in real-time. The study reveals that the changes in pressure responses with the onset of acid in the formation can be successfully used to determine the effectiveness of treatment design and can aid in carrying out informed changes during the treatment. Better understanding of these responses can also lead to more effective treatment designs for future jobs. The interpretation developed in the study can be applied to most of the acid fracturing treatments that are pumped worldwide.


Author(s):  
Sheng Luo ◽  
Peng Yan ◽  
Wen-Bo Lu ◽  
Ming Chen ◽  
Gao-Hui Wang ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 64
Author(s):  
Maija Nuppunen-Puputti ◽  
Riikka Kietäväinen ◽  
Lotta Purkamo ◽  
Pauliina Rajala ◽  
Merja Itävaara ◽  
...  

Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site. The observed fungal phyla in Outokumpu subsurface were Basidiomycota, Ascomycota, and Mortierellomycota. In addition, significant proportion of the community represented unclassified Fungi. Sessile fungal communities on mica schist surfaces differed from the planktic fungal communities. The main bacterial phyla were Firmicutes, Proteobacteria, and Actinobacteriota. Biofilm formation on rock surfaces is a slow process and our results indicate that fungal and bacterial communities dominate the early surface attachment process, when pristine mineral surfaces are exposed to deep subsurface ecosystems. Various fungi showed statistically significant cross-kingdom correlation with both thiosulfate and sulfate reducing bacteria, e.g., SRB2 with fungi Debaryomyces hansenii.


Sign in / Sign up

Export Citation Format

Share Document