Resources from coal beneficiation waste: Chemistry and petrology of the Ayrshire coal tailings ponds, Chandler, Indiana

Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123054
Author(s):  
Panpan Xie ◽  
Jingjing Liu ◽  
Biao Fu ◽  
Thomas Newmaster ◽  
James C. Hower
Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 164
Author(s):  
Honorine Gauthier-Manuel ◽  
Diane Radola ◽  
Flavien Choulet ◽  
Martine Buatier ◽  
Raphaël Vauthier ◽  
...  

Over the course of history, the development of human societies implied the exploitation of mineral resources which generated huge amounts of mining wastes leading to substantial environmental contamination by various metal(loid)s. This is especially the case of coal mine tailings which, subjected to weathering reactions, produce acid mine drainage (AMD), a recurring ecological issue related to current and past mining activities. In this study, we aimed to determine the origin, the fate and the ecotoxicity of metal(loid)s leached from a historical coal tailing heap to the Beuveroux river (Franche-Comté, France) using a combination of mineralogical, chemical and biological approaches. In the constitutive materials of the tailings, we identified galena, tetrahedrite and bournonite as metal-rich minerals and their weathering has led to massive contamination of the water and suspended particles of the river bordering the heap. The ecotoxicity of the AMD has been assessed using Chironomus riparius larvae encaged in the field during a one-month biomonitoring campaign. The larvae showed lethal and sub-lethal (growth and emergence inhibition and delay) impairments at the AMD tributary and near downstream stations. Metal bioaccumulation and subcellular fractionation in the larvae tissues revealed a strong bioavailability of, notably, As, Pb and Tl explaining the observed biological responses. Thus, more than 70 years after the end of mining operations, the coal tailings remain a chronic source of contamination and environmental risks in AMD effluent receiving waters.


Author(s):  
Nicolò Barago ◽  
Stefano Covelli ◽  
Mara Mauri ◽  
Sara Oberti di Valnera ◽  
Emanuele Forte

When mines are decommissioned, tailings piles can act as sources of contamination for decades or even centuries. Tailings, which usually contain high concentrations of metals and trace elements, can be reprocessed for a secondary recovery of valuable elements with an innovative approach to a circular economy. This study offers new results for tailings ponds characterisation and chemical content prediction based on an integrated geophysical-geochemical approach. The study of the Raibl Pb-Zn tailings impoundment was done using bulk chemical analysis on borehole samples, Electrical Resistivity Tomography surveys, and Ground Penetrating Radar measurements. We found valuable and statistically significant correlations between the electrical resistivity of the mining impoundments and the metal distribution, thus providing a practical opportunity to characterise large volumes of metal-bearing tailings. In particular, these results can be useful to aid in the development of environmental monitoring programs for remediation purposes or to implement economic secondary recovery plans.


2015 ◽  
Vol 34 (2) ◽  
pp. 173-183 ◽  
Author(s):  
Jingfeng He ◽  
Yuemin Zhao ◽  
Yaqun He ◽  
Zhenfu Luo ◽  
Hong Li ◽  
...  

2015 ◽  
Vol 81 ◽  
pp. 142-148 ◽  
Author(s):  
Hafiz H. Salih ◽  
Lixia Wang ◽  
Vinod Patel ◽  
Vasudevan Namboodiri ◽  
Kishore Rajagopalan

2018 ◽  
Vol 18 (10) ◽  
pp. 7361-7378 ◽  
Author(s):  
Sabour Baray ◽  
Andrea Darlington ◽  
Mark Gordon ◽  
Katherine L. Hayden ◽  
Amy Leithead ◽  
...  

Abstract. Aircraft-based measurements of methane (CH4) and other air pollutants in the Athabasca Oil Sands Region (AOSR) were made during a summer intensive field campaign between 13 August and 7 September 2013 in support of the Joint Canada–Alberta Implementation Plan for Oil Sands Monitoring. Chemical signatures were used to identify CH4 sources from tailings ponds (BTEX VOCs), open pit surface mines (NOy and rBC) and elevated plumes from bitumen upgrading facilities (SO2 and NOy). Emission rates of CH4 were determined for the five primary surface mining facilities in the region using two mass-balance methods. Emission rates from source categories within each facility were estimated when plumes from the sources were spatially separable. Tailings ponds accounted for 45 % of total CH4 emissions measured from the major surface mining facilities in the region, while emissions from operations in the open pit mines accounted for ∼ 50 %. The average open pit surface mining emission rates ranged from 1.2 to 2.8 t of CH4 h−1 for different facilities in the AOSR. Amongst the 19 tailings ponds, Mildred Lake Settling Basin, the oldest pond in the region, was found to be responsible for the majority of tailings ponds emissions of CH4 (> 70 %). The sum of measured emission rates of CH4 from the five major facilities, 19.2 ± 1.1 t CH4 h−1, was similar to a single mass-balance determination of CH4 from all major sources in the AOSR determined from a single flight downwind of the facilities, 23.7 ± 3.7 t CH4 h−1. The measured hourly CH4 emission rate from all facilities in the AOSR is 48 ± 8 % higher than that extracted for 2013 from the Canadian Greenhouse Gas Reporting Program, a legislated facility-reported emissions inventory, converted to hourly units. The measured emissions correspond to an emissions rate of 0.17 ± 0.01 Tg CH4 yr−1 if the emissions are assumed as temporally constant, which is an uncertain assumption. The emission rates reported here are relevant for the summer season. In the future, effort should be devoted to measurements in different seasons to further our understanding of the seasonal parameters impacting fugitive emissions of CH4 and to allow for better estimates of annual emissions and year-to-year variability.


1986 ◽  
Vol 14 ◽  
pp. 183-192 ◽  
Author(s):  
Keith D. Bartle ◽  
Amanda J. Pappin ◽  
Norman Taylor ◽  
Derek G. Mills

Sign in / Sign up

Export Citation Format

Share Document