Fluid dynamic simulation in a chemical looping combustion with two interconnected fluidized beds

2011 ◽  
Vol 92 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Wang Shuai ◽  
Liu Guodong ◽  
Lu Huilin ◽  
Chen Juhui ◽  
He Yurong ◽  
...  
2019 ◽  
Vol 33 (5) ◽  
pp. 4442-4453 ◽  
Author(s):  
Jesper Aronsson ◽  
Ewa Krymarys ◽  
Viktor Stenberg ◽  
Tobias Mattisson ◽  
Anders Lyngfelt ◽  
...  

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Johannes George van der Watt ◽  
Daniel Laudal ◽  
Gautham Krishnamoorthy ◽  
Harry Feilen ◽  
Michael Mann ◽  
...  

We have investigated a novel gas/solid contacting configuration for chemical looping combustion (CLC) with potential operating benefits. CLC configurations are typically able to achieve high fuel conversion efficiencies at the expense of high operating costs and low system reliability. The spouted fluid bed (SB) was identified as an improved reactor configuration for CLC, since it typically exhibits high heat transfer rates and offers the ability to use lower gas flows for material movement compared to bubbling beds (BB). Multiphase Flow with Interphase eXchanges (MFIX) software was used to establish a spouted fluid bed reactor design. An experimental setup was built to supplement the model. The experimental setup was also modified for testing under high temperature, reacting conditions (1073–1273 K). The setup was operated in either a spouted fluid bed or a bubbling bed regime to compare the performance attributes of each. Results for the reactor configurations are presented for CLC using a mixture of carbon monoxide and hydrogen as fuel. Compared to the bubbling bed, the spouted fluid bed reactor achieved an equivalent or better fuel conversion at a lower pressure drop over the material bed. The spouted fluid bed design represents a viable configuration to improve gas/solid contacting for efficient fuel conversion, lower energy requirements for material movement and increase operational robustness for CLC. The research laid the groundwork for future research into a multi-phase reacting flow CLC system. The system will be developed from computational fluid dynamic modeling and pilot-scale testing to expedite the development of CLC technologies.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Matthew A. Hamilton ◽  
Kevin J. Whitty ◽  
JoAnn S. Lighty

Chemical looping with oxygen uncoupling (CLOU) is a carbon capture technology that utilizes a metal oxide as an oxygen carrier to selectively separate oxygen from air and release gaseous O2 into a reactor where fuel, such as coal, is combusted. Previous research has addressed reactor design for CLOU systems, but little direct comparison between different reactor designs has been performed. This study utilizes Barracuda-VR® for comparison of two system configurations, one uses circulating fluidized beds (CFB) for both the air reactor (AR) and fuel reactor (FR) and another uses bubbling fluidized beds for both reactors. Initial validation of experimental and computational fluid dynamic (CFD) simulations was performed to show that basic trends are captured with the CFD code. The CFD simulations were then used to perform comparison of key performance parameters such as solids circulation rate and reactor residence time, pressure profiles in the reactors and loopseals, and particle velocities in different locations of the reactor as functions of total solids inventory and reactor gas flows. Using these simulation results, it was determined that the dual CFB system had larger range for solids circulation rate before choked flow was obtained. Both systems had similar particle velocities for the bottom 80% of particle mass, but the bubbling bed (BB) obtained higher particle velocities as compared to the circulating fluidized-bed FR, due to the transport riser. As a system, the results showed that the dual CFB configuration allowed better control over the range of parameters tested.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Ronald W. Breault ◽  
Cory S. Yarrington ◽  
Justin M. Weber

For chemical looping processes to become an economically viable technology, an inexpensive carrier that can endure repeated reduction and oxidation cycles needs to be identified or developed. Unfortunately, the reduction of hematite ore with methane in both batch and fluidized beds has revealed that the performance (methane conversion) decreases with time. Previous analysis had shown that the grains within the particle grew with the net effect of reducing the surface area of the particles and thereby reducing the rate and net conversion for a fixed reduction time. To improve the lifespan of hematite ore, it is hypothesized that if the grain size could be stabilized, then the conversion could be stabilized. In this work, series of tests were conducted in an electrically heated fluidized bed. The hematite ore was first pretreated at a temperature higher than the subsequent reduction temperatures. After pretreatment, the hematite ore was subjected to a series of cyclic reduction/oxidation experiments. The results show that the ore can be stabilized for cycles at different conditions up to the pretreatment temperature without any degradation. Details of the pretreatment process and the test results will be presented.


Sign in / Sign up

Export Citation Format

Share Document