Combustion chamber design and performance for micro gas turbine application

2017 ◽  
Vol 166 ◽  
pp. 258-268 ◽  
Author(s):  
Ibrahim I. Enagi ◽  
K.A. Al-attab ◽  
Z.A. Zainal
1975 ◽  
Author(s):  
C. P. Lerch ◽  
P. H. Wulff

Final field adjustments to optimize combustion and performance, as well as the comprehensive on site evaluation program performed on this gas turbine, are described in this paper. Included are a description of a series of minor combustion modifications which were easily possible due to the unique single-combustion-chamber design. Tests discussed included measurements of turbine blade operating temperatures and exhaust emissions.


Author(s):  
Alexander Wiedermann ◽  
Ulrich Orth ◽  
Emil Aschenbruck ◽  
Frank Reiss ◽  
Dietmar Krüger ◽  
...  

MAN Diesel & Turbo has developed a new gas turbine in the 6 MW-class for both mechanical drive and power generation applications. The lay-out of the Gas Turbine has been driven by opportunities in current and future markets and the positioning of the competition, and this has determined the characteristics and technical parameters which have been optimized in the 6 MW design. The design makes use of extremely high precision engineering so that the assembly of sub components to modules is a smooth flowing process and can guarantee both the high standards in quality and performance which MAN Diesel & Turbo is aiming for. Individual components have been tested and thoroughly validated. These tests include in particular the compressor of the gas turbine and the combustion chamber. The commissioning of the gas turbine prototype engine had been prepared with a numerous number of measuring probes and carried out at the Oberhausen plant gas turbine test field. Results of component and the gas turbine prototype tests will be presented and discussed.


Author(s):  
Masato Urashima ◽  
Shuichi Torii

Biomass is a renewable energy source in that the energy that it contains comes from the sun. One of sources of biomass is municipal solid waste. The final goal of the study is to develop the combustor for the micro gas-turbine using the biomass as a fuel. Here, it is very important to remove ashes (10μm or more in diameter) in the gas because its size affects the strength or erosion of the turbine blade. The aim of the present study is to observe the combustion phenomena relevant to a mixture of waste liquid and waste oil. Emphasis is placed on the ash size which is produced from the combustion chamber developed here. It is found that the ash size obtained at the exit of the combustor is less than 10 μm.


Author(s):  
Alessio Abrassi ◽  
Alberto Traverso ◽  
David Tucker ◽  
Eric Liese

Abstract A dynamic model is developed for a Micro Gas Turbine (MGT), characterized by an intrinsic free-spool configuration, coupled to large volumes. This is inspired by an experimental facility at the National Energy Technology Laboratory (NETL) called Hyper, which emulates a hybrid MGT and Fuel Cell system. The experiment and model can simulate stable and unstable operating conditions. The model is used to investigate the effects of different volumes on surge events, and to test possible strategies to safely avoid or recover from unstable compressor working conditions. The modelling approach started from the Greitzer lumped parameter approach, and it has been improved with integration of empirical methods and simulated components to better match the real Hyper plant layout and performance. Pressure, flow rate, and frequency plots are shown for the surge behavior comparing two different volume sizes, for cases where gas turbine shaft speed is uncontrolled (open loop) and controlled (closed loop). The ability to recover from a surge event is also demonstrated.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
Feng Xian Tan ◽  
Srithar Rajoo ◽  
Meng Soon Chiong ◽  
Cheng Tung Chong ◽  
Alessandro Romagnoli ◽  
...  

Stringent emission rules, air pollution, fluctuation of fuel price and depletion of fossil fuel resources are driving the industry to seek for better alternative of power generation. Micro gas turbine (MGT) provides a promising potential to solve the facing problems. MGT could be used in many applications such as in range extender vehicle, auxiliary power generator, power backup system, combine heat and power system, etc. Combustor plays a very crucial role in MGT system as its performance directly affects the emission quality, power output and fuel consumption of the entire system. This paper demonstrates the literature review, design methodology and performance prediction of the combustor designed for a 14.5kW MGT test rig.


Author(s):  
Martina Hohloch ◽  
Rajesh Sadanandan ◽  
Axel Widenhorn ◽  
Wolfgang Meier ◽  
Manfred Aigner

In this work the combustion behavior of the Turbec T100 natural gas/air combustor was analyzed experimentally. For the visualization of the flame structures at various stationary load points OH* chemiluminescence and OH-PLIF measurements were performed in a micro gas turbine test rig equipped with an optically accessible combustion chamber. The OH* chemiluminescence measurements are used to get an impression of the shape and the location of the heat release zones. In addition the OH-PLIF measurements enabled spatially and temporarily resolved information of the reaction zones. Depending on the load point the shape of the flame was seen to vary from cylindrical to conical. With increasing thermal power load the maximum heat release zones shift to a lifted flame. Moreover, the effect of the optically accessible combustion chamber on the performance of the micro gas turbine is evaluated.


Author(s):  
Gajanana B. Hegde ◽  
Bhupendra Khandelwal ◽  
Vishal Sethi ◽  
Riti Singh

The most uncertain and challenging part in the design of a gas turbine has long been the combustion chamber. There has been large number of experimentations in industries and universities alike to better understand the dynamic and complex processes that occur inside a combustion chamber. This study concentrates on gas turbine combustors as a whole, and formulates a theoretical design procedure for staged combustors in particular. Not much of literatures available currently in public domain provide intensive study on designing staged combustors. The work covers an extensive study of design methods applied in conventional combustor designs, which includes the reverse flow combustor and the axial flow annular combustors. The knowledge acquired from this study is then applied to develop a theoretical design methodology for double staged (radial and axial) low emission annular combustors. Additionally a model combustor is designed for each type; radial and axial staging using the developed methodology. A prediction of the performance for the model combustors is executed. The main conclusion is that the dimensions of model combustors obtained from the developed design methodology are within the feasibility limits. The comparison between the radially staged and the axially staged combustor has yielded the predicted results such as lower NOx prediction for the latter and shorter combustor length for the former. The NOx emission result of the new combustor models are found to be in the range of 50–60ppm. However the predicted NOx results are only very crude and need further detailed study.


Sign in / Sign up

Export Citation Format

Share Document