Combination of hydrotalcite-like-compound-derived Ni-Fe/Mg/Al and ceria-supported Rh catalysts for fuel reforming in exhaust gas recirculation system of gasoline engine

2022 ◽  
Vol 225 ◽  
pp. 107061
Author(s):  
Mii Betchaku ◽  
Yoshinao Nakagawa ◽  
Masazumi Tamura ◽  
Mizuho Yabushita ◽  
Yasutomo Miura ◽  
...  
2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880960 ◽  
Author(s):  
Xianqing Shen ◽  
Kai Shen ◽  
Zhendong Zhang

The effects of high-pressure and low-pressure exhaust gas recirculation on engine and turbocharger performance were investigated in a turbocharged gasoline direct injection engine. Some performances, such as engine combustion, fuel consumption, intake and exhaust, and turbocharger operating conditions, were compared at wide open throttle and partial load with the high-pressure and low-pressure exhaust gas recirculation systems. The reasons for these changes are analyzed. The results showed EGR system of gasoline engine could optimize the cylinder combustion, reduce pumping mean effective pressure and lower fuel consumption. Low-pressure exhaust gas recirculation system has higher thermal efficiency than high-pressure exhaust gas recirculation, especially on partial load condition. The main reasons are as follows: more exhaust energy is used by the turbocharger with low-pressure exhaust gas recirculation system, and the lower exhaust gas temperature of engine would optimize the combustion in cylinder.


2017 ◽  
Vol 42 (12) ◽  
pp. 8288-8298 ◽  
Author(s):  
Yaodong Du ◽  
Xiumin Yu ◽  
Lin Liu ◽  
Runzeng Li ◽  
Xiongyinan Zuo ◽  
...  

2019 ◽  
Vol 44 (21) ◽  
pp. 11205-11218 ◽  
Author(s):  
S. Manigandan ◽  
P. Gunasekar ◽  
S. Poorchilamban ◽  
S. Nithya ◽  
J. Devipriya ◽  
...  

Author(s):  
Mario Santillo ◽  
Suzanne Wait ◽  
Julia Buckland

We investigate control strategies for traditional throttle-in-bore as well as low-cost cartridge-style throttle bodies for the air-intake system (AIS) throttle used in low-pressure exhaust-gas recirculation (LPEGR) on a turbocharged gasoline engine. Pressure sensors placed upstream and downstream of the AIS throttle are available as signals from the vehicle’s engine control unit, however, we do not use high-bandwidth feedback control of the AIS throttle in order to maintain frequency separation from the higher-rate EGR loop, which uses the downstream pressure sensor for feedback control. A design-of-experiments conducted using a feed-forward lookup table-based AIS throttle control strategy exposes controller sensitivity to part-to-part variations. For accurate tracking in the presence of these variations, we explore the use of adaptive feedback control. In particular, we use an algebraic model representing the throttle plate effective opening area to develop a recursive least-squares (RLS)-based estimation routine. A low-pass filtered version of the estimated model parameters is subsequently used in the forward-path AIS throttle controller. Results are presented comparing the RLS-based feedback algorithm with the feed-forward lookup table-based control strategy. RLS is able to adapt for part-to-part and change-over-time variabilities and exhibits an improved steady-state tracking response compared to the feed-forward control strategy.


Author(s):  
S. Allenby ◽  
W-C. Chang ◽  
A. Megaritis ◽  
M. L. Wyszyński

An experimental study was carried out to evaluate the potential of hydrogen enrichment to increase the tolerance of a stoichiometrically fuelled natural gas engine to high levels of dilution by exhaust gas recirculation (EGR). This provides significant gains in terms of exhaust emissions without the rapid reduction in combustion stability typically seen when applying EGR to a methane-fuelled engine. Presented results give the envelope of benefits from hydrogen enrichment. In parallel, the performance of a catalytic exhaust gas reforming reactor was investigated in order that it could be used as an onboard source of hydrogen-rich EGR. It was shown that sufficient hydrogen was generated with currently available prototype catalysts to allow the engine, at the operating points considered, to tolerate up to 25 per cent EGR, while maintaining a coefficient of variability of indicated mean effective pressure below 5 per cent. This level of EGR gives a reduction in NO emissions greater than 80 per cent in all test cases.


Sign in / Sign up

Export Citation Format

Share Document