The effect of exhaust gas recirculation (EGR) on combustion stability, engine performance and exhaust emissions in a gasoline engine

2001 ◽  
Vol 15 (10) ◽  
pp. 1442-1450 ◽  
Author(s):  
Jinyoung Cha ◽  
Junhong Kwon ◽  
Youngjin Cho ◽  
Simsoo Park
Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 609 ◽  
Author(s):  
Amin Mahmoudzadeh Andwari ◽  
Apostolos Pesyridis ◽  
Vahid Esfahanian ◽  
Mohd Said

Two-stroke cycle engines have always been prominent due to their distinctive advantage incorporating high power-to-weight ratio, however the drawbacks are poor combustion efficiency, fuel short-circuiting and excessive emission of uHC and CO. These problems are apparent at low-load and speed regions and are the major obstacle to their global acceptance. The deficiencies can be addressed by increasing the in-cylinder average charge temperature employing Exhaust Gas Recirculation (EGR). An experimental study is conducted to investigate the influence of utilizing EGR techniques, including Internal and External EGR, on combustion misfiring occurrence, combustion stability and exhaust emissions using a single cylinder two-stroke SI engine at idling, low and mid-load conditions. From the results, it is observed since the average in-cylinder charge temperature is increased, due to utilizing EGRs, engine’s low and mid-load irregular combustions (misfire) and exhaust emissions are remarkably supressed and almost all of misfire cycles eliminated depending on the percentage of EGRs. In terms of combustion stability, it is agreed in general the application of EGRs improves the cyclic variation of IMEP, Pmax and CA10 compared to conventional operation. However, applying Ex-EGR compared to In-EGR will deteriorate cyclic variability of IMEP and CA10.


2017 ◽  
Vol 42 (12) ◽  
pp. 8288-8298 ◽  
Author(s):  
Yaodong Du ◽  
Xiumin Yu ◽  
Lin Liu ◽  
Runzeng Li ◽  
Xiongyinan Zuo ◽  
...  

2014 ◽  
Vol 663 ◽  
pp. 331-335 ◽  
Author(s):  
Amin Mahmoudzadeh Andwari ◽  
Azhar Abdul Aziz ◽  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff

A new kind of alternative combustion concept that has attracted attention intensively in recent years is called controlled auto-ignition (CAI) combustion. CAI combustion has been proposed and partially implemented with the aim of both improving the thermal efficiency of internal combustion engines, achieving cleaner exhaust emissions and lower cyclic variation. An experimental study is conducted through a CAI two-stroke cycle engine in order to investigate the influence of internal exhaust gas recirculation (In-EGR) and external exhaust gas recirculation (Ex-EGR) variation in relation to combustion cyclic variability and exhaust emissions characteristics. Results implied that cyclic variation of both combustion-related and pressure-related parameter is substantially improved. Furthermore remarkable decreased exhaust emissions, unburned hydrocarbon (uHC), carbon monoxide (CO) and nitric dioxide (NOX), was observed.


2019 ◽  
Vol 44 (21) ◽  
pp. 11205-11218 ◽  
Author(s):  
S. Manigandan ◽  
P. Gunasekar ◽  
S. Poorchilamban ◽  
S. Nithya ◽  
J. Devipriya ◽  
...  

Author(s):  
Mario Santillo ◽  
Suzanne Wait ◽  
Julia Buckland

We investigate control strategies for traditional throttle-in-bore as well as low-cost cartridge-style throttle bodies for the air-intake system (AIS) throttle used in low-pressure exhaust-gas recirculation (LPEGR) on a turbocharged gasoline engine. Pressure sensors placed upstream and downstream of the AIS throttle are available as signals from the vehicle’s engine control unit, however, we do not use high-bandwidth feedback control of the AIS throttle in order to maintain frequency separation from the higher-rate EGR loop, which uses the downstream pressure sensor for feedback control. A design-of-experiments conducted using a feed-forward lookup table-based AIS throttle control strategy exposes controller sensitivity to part-to-part variations. For accurate tracking in the presence of these variations, we explore the use of adaptive feedback control. In particular, we use an algebraic model representing the throttle plate effective opening area to develop a recursive least-squares (RLS)-based estimation routine. A low-pass filtered version of the estimated model parameters is subsequently used in the forward-path AIS throttle controller. Results are presented comparing the RLS-based feedback algorithm with the feed-forward lookup table-based control strategy. RLS is able to adapt for part-to-part and change-over-time variabilities and exhibits an improved steady-state tracking response compared to the feed-forward control strategy.


Author(s):  
S. Allenby ◽  
W-C. Chang ◽  
A. Megaritis ◽  
M. L. Wyszyński

An experimental study was carried out to evaluate the potential of hydrogen enrichment to increase the tolerance of a stoichiometrically fuelled natural gas engine to high levels of dilution by exhaust gas recirculation (EGR). This provides significant gains in terms of exhaust emissions without the rapid reduction in combustion stability typically seen when applying EGR to a methane-fuelled engine. Presented results give the envelope of benefits from hydrogen enrichment. In parallel, the performance of a catalytic exhaust gas reforming reactor was investigated in order that it could be used as an onboard source of hydrogen-rich EGR. It was shown that sufficient hydrogen was generated with currently available prototype catalysts to allow the engine, at the operating points considered, to tolerate up to 25 per cent EGR, while maintaining a coefficient of variability of indicated mean effective pressure below 5 per cent. This level of EGR gives a reduction in NO emissions greater than 80 per cent in all test cases.


Sign in / Sign up

Export Citation Format

Share Document