scholarly journals Experimental study on the effect of high-pressure and low-pressure exhaust gas recirculation on gasoline engine and turbocharger

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880960 ◽  
Author(s):  
Xianqing Shen ◽  
Kai Shen ◽  
Zhendong Zhang

The effects of high-pressure and low-pressure exhaust gas recirculation on engine and turbocharger performance were investigated in a turbocharged gasoline direct injection engine. Some performances, such as engine combustion, fuel consumption, intake and exhaust, and turbocharger operating conditions, were compared at wide open throttle and partial load with the high-pressure and low-pressure exhaust gas recirculation systems. The reasons for these changes are analyzed. The results showed EGR system of gasoline engine could optimize the cylinder combustion, reduce pumping mean effective pressure and lower fuel consumption. Low-pressure exhaust gas recirculation system has higher thermal efficiency than high-pressure exhaust gas recirculation, especially on partial load condition. The main reasons are as follows: more exhaust energy is used by the turbocharger with low-pressure exhaust gas recirculation system, and the lower exhaust gas temperature of engine would optimize the combustion in cylinder.

2017 ◽  
Vol 18 (10) ◽  
pp. 973-990 ◽  
Author(s):  
Jaeheun Kim ◽  
Choongsik Bae

An investigation was carried out to examine the feasibility of replacing the conventional high-pressure loop/low-pressure loop exhaust gas recirculation with a combination of internal and low-pressure loop exhaust gas recirculation. The main objective of this alternative exhaust gas recirculation path configuration is to extend the limits of the late intake valve closing strategy, without the concern of backpressure caused by the high-pressure loop exhaust gas recirculation. The late intake valve closing strategy improved the conventional trade-off relation between nitrogen oxides and smoke emissions. The gross indicated mean effective pressure was maintained at a similar level, as long as the intake boosting pressure kept changing with respect to the intake valve closing timing. Applying the high-pressure loop exhaust gas recirculation in the boosted conditions yielded concern of the exhaust backpressure increase. The presence of high-pressure loop exhaust gas recirculation limited further intake valve closing retardation when the negative effect of increased pumping work cancelled out the positive effect of improving the emissions’ trade-off. Replacing high-pressure loop exhaust gas recirculation with internal exhaust gas recirculation reduced the burden of such exhaust backpressure and the pumping loss. However, a simple feasibility analysis indicated that a high-efficiency turbocharger was required to make the pumping work close to zero. The internal exhaust gas recirculation strategy was able to control the nitrogen oxides emissions at a low level with much lower O2 concentration, even though the initial in-cylinder temperature was high due to hot residual gas. Retardation of intake valve closing timing and intake boosting contributed to increasing the charge density; therefore, the smoke emission reduced due to the higher air–fuel ratio value exceeding 25. The combination of internal and low pressure loop loop exhaust gas recirculation with late intake valve closing strategy exhibited an improvement on the trade-off relation between nitrogen oxides and smoke emissions, while maintaining the gross indicated mean effective pressure at a comparable level with that of the high-pressure loop exhaust gas recirculation configuration.


2017 ◽  
Vol 52 (6) ◽  
pp. 773-777
Author(s):  
Takashi Ueda ◽  
Kazuhisa Ito ◽  
Naohiro Hiraoka

2020 ◽  
pp. 146808741989540 ◽  
Author(s):  
Vicente Macián ◽  
José Manuel Luján ◽  
Héctor Climent ◽  
Julián Miguel-García ◽  
Stéphane Guilain ◽  
...  

The objective of the study is to determine the effect of the high-pressure exhaust gas recirculation dispersion in automotive diesel engines in NO x and smoke emissions in steady engine operation. The investigation quantifies the NO x and smoke emissions as a function of the dispersion of the high-pressure exhaust gas recirculation among cylinders. The experiments are performed on a test bench with a 1.6-L automotive diesel engine. In order to track the high-pressure exhaust gas recirculation dispersion in the intake pipes, a valves system to measure CO2, that is, exhaust gas recirculation rate, was installed pipe to pipe. In addition, a valves device to measure NO x emissions cylinder to cylinder in the exhaust was installed. Moreover, a smoke meter device was installed downstream the turbine, to measure the effect of the high-pressure exhaust gas recirculation dispersion on smoke emissions. Five different engine speeds were studied with different torque levels; thus, the engine map was widely studied, from 1250 to 3000 r/min and between 6 and 20 bar of brake mean effective pressure. The exhaust gas recirculation rate varies between 4% and 25% depending on the operating point. The methodology focused on experimental tools combining traditional measuring devices with a specific valves system, which offers accurate information about species concentration in both the intake and the exhaust manifolds. The study was performed at constant raw NO x emissions to observe the effect of the exhaust gas recirculation dispersion in the opacity and fuel consumption. The study concludes that when the exhaust gas recirculation dispersion is low, the opacity presents reduced values in all operating points. However, above a certain level of exhaust gas recirculation dispersion, the opacity increases dramatically with different slopes depending on the engine running condition. This study allows quantifying the exhaust gas recirculation dispersion threshold. In addition, the exhaust gas recirculation dispersion could contribute to increase the fuel consumption up to 3.5%.


Author(s):  
Yongsheng He ◽  
Jim Liu ◽  
Bin Zhu ◽  
David Sun

In this paper, the development of a Miller cycle gasoline engine which has a high compression ratio from 11.5:1 to 12.5:1, single-stage turbocharging and external cooled exhaust gas recirculation is described. The improvement in the fuel economy by adding external cooled exhaust gas recirculation to the Miller cycle engine at different geometric compression ratios were experimentally evaluated in part-load operating conditions. The potential of adding external cooled exhaust gas recirculation in full-load conditions to mitigate pre-ignition in order to allow higher geometric compression ratios to be utilized was also assessed. An average of 3.2% additional improvement in the fuel economy was achieved by adding external cooled exhaust gas recirculation to the Miller cycle engine at a geometric compression ratio of 11.5:1. It was also demonstrated that the fuel consumption of the engine with external cooled exhaust gas recirculation was reduced by 3–7% in a wide range of part-load operating conditions and that the engine output of the Miller cycle engine at a geometric compression ratio of 12.5:1 increased at 2000 r/min in the full-load condition. The Miller cycle engine with external cooled exhaust gas recirculation at a geometric compression ratio of 12.5:1 achieved a broad brake specific fuel consumption range of 220 g/kW h or lower, with the lowest brake specific fuel consumption of 215 g/kW h. While there are still challenges in implementing external cooled exhaust gas recirculation, the Miller cycle engine with single-stage turbocharging and external cooled exhaust gas recirculation showed its potential for substantial improvement in the fuel economy as one of the technical pathways to meet future requirements in reducing carbon dioxide emissions.


Author(s):  
Richard D Burke ◽  
Andy J Lewis ◽  
Sam Akehurst ◽  
Chris J Brace ◽  
Ian Pegg ◽  
...  

Active thermal management systems offer a potential for small improvements in fuel consumption that will contribute to upcoming legislation on carbon dioxide emissions. These systems offer new degrees of freedom for engine calibration; however, their full potential will only be exploited if a systems approach to their calibration is adopted, in conjunction with other engine controls. In this work, a design-of-experiments approach is extended to allow its application to transient drive cycles performed on a dynamic test stand. Experimental precision is of crucial importance in this technique since even small errors would obscure the effects of interest. The dynamic behaviour of the engine was represented mathematically in a manner that enabled conventional steady state modelling approaches to be employed in order to predict the thermal state of critical parts of the engine as a function of the actuator settings. A 17-point test matrix was undertaken, and subsequent modelling and optimisation procedures indicated potential 2–3% fuel consumption benefits under iso-nitrogen oxide conditions. Reductions in the thermal inertia appeared to be the most effective approach for reducing the engine warm-up time, which translated approximately to a 1.3% reduction in the fuel consumption per kilogram of coolant. A novel oil-cooled exhaust gas recirculation system showed the significant benefits of cooling the exhaust gases, thereby reducing the inlet gas temperature by 5 °C and subsequently the nitrogen oxide emissions by 6%, in addition to increasing the warm-up rate of the oil. This suggested that optimising the thermal management system for cooling the gases in the exhaust gas recirculation system can offer significant improvements. For the first time this paper presents a technique that allows simple predictive models of the thermal state of the engine to be integrated into the calibration process in order to deliver the optimum benefit. In particular, it is shown how the effect of the thermal management system on the nitrogen oxides can be traded off, by advancing the injection timing, to give significant improvements in the fuel consumption.


Sign in / Sign up

Export Citation Format

Share Document