Hydrogen transport and trapping in ODS-EUROFER

2007 ◽  
Vol 82 (15-24) ◽  
pp. 2634-2640 ◽  
Author(s):  
G.A. Esteban ◽  
A. Peña ◽  
F. Legarda ◽  
R. Lindau
Keyword(s):  
Author(s):  
Mohsen Dadfarnia ◽  
Petros Sofronis ◽  
Ian Robertson ◽  
Brian P. Somerday ◽  
Govindarajan Muralidharan ◽  
...  

The technology of large scale hydrogen transmission from central production facilities to refueling stations and stationary power sites is at present undeveloped. Among the problems which confront the implementation of this technology is the deleterious effect of hydrogen on structural material properties, in particular at gas pressure of 1000 psi which is the desirable transmission pressure suggested by economic studies for efficient transport. In this paper, a hydrogen transport methodology for the calculation of hydrogen accumulation ahead of a crack tip in a pipeline steel is outlined. The approach accounts for stress-driven transient diffusion of hydrogen and trapping at microstructural defects whose density may evolve dynamically with deformation. The results are used to discuss a lifetime prediction methodology for failure of materials used for pipelines and welds exposed to high-pressure hydrogen. Development of such predictive capability and strategies is of paramount importance to the rapid assessment of using the natural-gas pipeline distribution system for hydrogen transport and of the susceptibility of new alloys tailored for use in the new hydrogen economy.


1942 ◽  
Vol 142 (2) ◽  
pp. 543-555 ◽  
Author(s):  
V.R. Potter ◽  
W.C. Schneider

ChemInform ◽  
2009 ◽  
Vol 40 (15) ◽  
Author(s):  
P. P. Konorov ◽  
N. V. Rodionov ◽  
A. M. Yafyasov ◽  
V. B. Bozhevol'nov

2007 ◽  
Vol 131-133 ◽  
pp. 425-430 ◽  
Author(s):  
Anis M. Saad ◽  
Oleg Velichko ◽  
Yu P. Shaman ◽  
Adam Barcz ◽  
Andrzej Misiuk ◽  
...  

The silicon substrates were hydrogenated at approximately room temperature and hydrogen concentration profiles vs. depth have been measured by SIMS. Czochralski grown (CZ) wafers, both n- and p-type conductivity, were used in the experiments under consideration. For analysis of hydrogen transport processes and quasichemical reactions the model of hydrogen atoms diffusion and quasichemical reactions is proposed and the set of equations is obtained. The developed model takes into account the formation of bound hydrogen in the near surface region, hydrogen transport as a result of diffusion of hydrogen molecules 2 H , diffusion of metastable complexes * 2 H and diffusion of nonequilibrium hydrogen atoms. Interaction of 2 H with oxygen atoms and formation of immobile complexes “oxygen atom - hydrogen molecule” (O - H2 ) is also taken into account to explain the hydrogen concentration profiles in the substrates of n-type conductivity. The computer simulation based on the proposed equations has shown a good agreement of the calculated hydrogen profiles with the experimental data and has allowed receiving a value of the hydrogen molecules diffusivity at room temperature.


1992 ◽  
Vol 45 (12) ◽  
pp. 6564-6580 ◽  
Author(s):  
W. B. Jackson ◽  
C. C. Tsai

1984 ◽  
Vol 33 ◽  
Author(s):  
D. J. Sharp ◽  
J. K. G. Panitz ◽  
C. H. Seager

ABSTRACTA combination of chemical etching and sheet resistivity measurements showed that intense (1.4 mA/cm2 ) low energy (1400 eV) ion beam hydrogenation of polycrystalline silicon having a columnar structure can produce electrical defect passivation to depths in the order of 100 μm. Transmission electron micrographs disclose surface and near-surface features resulting from the ion beam bombardment which suggest that one of the hydrogen transport mechanisms may be defect induced.


Sign in / Sign up

Export Citation Format

Share Document