Characterisation of metal combustion with DUST code

2015 ◽  
Vol 98-99 ◽  
pp. 2142-2146 ◽  
Author(s):  
José R. García-Cascales ◽  
F.J.S. Velasco ◽  
Ramón A. Otón-Martínez ◽  
S. Espín-Tolosa ◽  
Ahmed Bentaib ◽  
...  
Keyword(s):  
1979 ◽  
Vol 101 (3) ◽  
pp. 320-325 ◽  
Author(s):  
G. Trantina ◽  
C. Grondahl

Successful application of ceramics in the gas turbine environment involves brittle material design and analysis, unique material properties, and laboratory demonstration of components. Alternative ceramic structures for application in a hybrid ceramic-metal combustion system were considered. Thermal stresses and probabilities of failure were calculated for tube, ring, and stave designs. The stress levels are relatively low for axial and radial temperature gradients in all 6 in. (152 mm) diameter combustors. Scaling to larger sizes is also considered. A hot streak temperature distribution resulted in stresses in the stave and tube which were three times the stresses in the ring design. Bend specimens were cut from one end of a 6 in. (152 mm) diameter, 10 in. (254 mm) long REFEL silicon carbide tube to assure a representative flaw distribution. Strength, strength scatter, and strength degradation were evaluated at 2200°F (1200°C) and were incorporated in the stress analysis. A low probability of failure was predicted. The REFEL tube was tested in the hybrid ceramic-metal combustion system at gas temperatures in excess of 2660°F (1460°C), 16 atm pressure, and 6.9 lb/s (3.1 kg/s) mass flow while burning No. 2 fuel oil. Successful ceramic performance was demonstrated at 2000°F (1090°C) steady state and at 2000°F (1110°C) per minute shutdown cooling rate.


2017 ◽  
Vol 305 ◽  
pp. 132-140 ◽  
Author(s):  
Sukbyung Chae ◽  
Heesoo Lee ◽  
Peter V. Pikhitsa ◽  
Changhyuk Kim ◽  
Seungha Shin ◽  
...  

Author(s):  
Norihiko Iki ◽  
Takahiro Inoue ◽  
Takayuki Matsunuma ◽  
Hiro Yoshida ◽  
Satoshi Sodeoka ◽  
...  

In order to develop a micro gas turbine with high turbine inlet temperature and thermal efficiency, a series of running tests has been carried out. J-850 jet engine (Sophia Precision Co., Ltd.) was chosen as a baseline machine. The turbine nozzle and the rotor are replaced by type SN-01 (Otsuka Ceramics Co., Ltd.) and type SN-235 (Kyocera Corporation) ceramic elements, respectively. By using type 3a engine, we succeeded one-hour running test of the engine without cooling and severe damages. The turbine inlet temperature was higher than 1000 °C. The rotating speed was about 120,000 rpm. Performances of the type 3a engine (with ceramic nozzle and rotor) and the type 1 (with Inconel alloy nozzle and ceramic rotor) were compared as follows: At the same rotation speed, turbine inlet temperature of the type 3a became higher than that of the type 1. Simultaneously, fuel consumption of type 3a was larger than that of the type 1. Thrust of the type 3a was slightly larger than that of the type 1. Those results imply that the thermal efficiency of type 3a is slightly, 2%, lower than that of the type 1. The present sealing configurations between ceramic nozzle-vanes and their holder plate and ceramic rotor-housing and metal combustion chamber were found to work well.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750046 ◽  
Author(s):  
Guangyu Wang ◽  
Guirong Liu ◽  
Qing Peng ◽  
Suvranu De

Aluminized explosives have been applied in military industry since decades ago. Compared with ideal explosives such as TNT, HMX, RDX, aluminized explosives feature both fast detonation and slow metal combustion chemistry, generating a complex multi-phase reactive flow. Though aluminized explosives have been employed for a long time, the mechanism underneath the chemical process is still not thoroughly understood. In this paper, a smooth particle hydrodynamics (SPH) method incorporated ignition and growth model, and afterburning model has been proposed for the simulation of aluminized explosive. Ignition and growth model is currently the most popular model for the simulation of high explosives, which is capable of accurately reproducing arrival time of detonation front and pressure history of high explosives. It has been integrated in commercial software such as ANSYS-LS DYNA. In addition, an afterburning model has been integrated in the SPH code to simulate the combustion of aluminum particles. Simulation is compared with experiment and good agreement is observed. The proposed mathematical model can be used to study the detonation of aluminized explosives.


Sign in / Sign up

Export Citation Format

Share Document