scholarly journals The MASi repository service — Comprehensive, metadata-driven and multi-community research data management

2019 ◽  
Vol 94 ◽  
pp. 879-894 ◽  
Author(s):  
Richard Grunzke ◽  
Volker Hartmann ◽  
Thomas Jejkal ◽  
Helen Kollai ◽  
Ajinkya Prabhune ◽  
...  
Author(s):  
Richard Grunzke ◽  
Volker Hartmann ◽  
Thomas Jejkal ◽  
Ajinkya Prabhune ◽  
Hendrik Herold ◽  
...  

Nowadays, the daily work of many research communities is characterized by an increasing amount and complexity of data. This makes it increasingly difficult to manage, access and utilize to ultimately gain scientific insights based on it. At the same time, domain scientists want to focus on their science instead of IT. The solution is research data management in order to store data in a structured way to enable easy discovery for future reference. An integral part is the use of metadata. With it, data becomes accessible by its content instead of only its name and location. The use of metadata shall be as automatic and seamless as possible in order to foster a high usability. Here we present the architecture and initial steps of the MASi project with its aim to build a comprehensive research data management service. First, it extends the existing KIT Data Manager framework by a generic programming interface and by a generic graphical web interface. Advanced additional features includes the integration of provenance metadata and persistent identifiers. The MASi service aims at being easily adaptable for arbitrary communities with limited effort. The requirements for the initial use cases within geography, chemistry and digital humanities are elucidated. The MASi research data management service is currently being built up to satisfy these complex and varying requirements in an efficient way.


Author(s):  
Richard Grunzke ◽  
Volker Hartmann ◽  
Thomas Jejkal ◽  
Ajinkya Prabhune ◽  
Hendrik Herold ◽  
...  

Nowadays, the daily work of many research communities is characterized by an increasing amount and complexity of data. This makes it increasingly difficult to manage, access and utilize to ultimately gain scientific insights based on it. At the same time, domain scientists want to focus on their science instead of IT. The solution is research data management in order to store data in a structured way to enable easy discovery for future reference. An integral part is the use of metadata. With it, data becomes accessible by its content instead of only its name and location. The use of metadata shall be as automatic and seamless as possible in order to foster a high usability. Here we present the architecture and initial steps of the MASi project with its aim to build a comprehensive research data management service. First, it extends the existing KIT Data Manager framework by a generic programming interface and by a generic graphical web interface. Advanced additional features includes the integration of provenance metadata and persistent identifiers. The MASi service aims at being easily adaptable for arbitrary communities with limited effort. The requirements for the initial use cases within geography, chemistry and digital humanities are elucidated. The MASi research data management service is currently being built up to satisfy these complex and varying requirements in an efficient way.


Author(s):  
Fabian Cremer ◽  
Silvia Daniel ◽  
Marina Lemaire ◽  
Katrin Moeller ◽  
Matthias Razum ◽  
...  

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Hanke ◽  
Franco Pestilli ◽  
Adina S. Wagner ◽  
Christopher J. Markiewicz ◽  
Jean-Baptiste Poline ◽  
...  

Abstract Decentralized research data management (dRDM) systems handle digital research objects across participating nodes without critically relying on central services. We present four perspectives in defense of dRDM, illustrating that, in contrast to centralized or federated research data management solutions, a dRDM system based on heterogeneous but interoperable components can offer a sustainable, resilient, inclusive, and adaptive infrastructure for scientific stakeholders: An individual scientist or laboratory, a research institute, a domain data archive or cloud computing platform, and a collaborative multisite consortium. All perspectives share the use of a common, self-contained, portable data structure as an abstraction from current technology and service choices. In conjunction, the four perspectives review how varying requirements of independent scientific stakeholders can be addressed by a scalable, uniform dRDM solution and present a working system as an exemplary implementation.


2016 ◽  
Vol Volume 112 (Number 7/8) ◽  
Author(s):  
Margaret M. Koopman ◽  
Karin de Jager ◽  
◽  

Abstract Digital data archiving and research data management have become increasingly important for institutions in South Africa, particularly after the announcement by the National Research Foundation, one of the principal South African academic research funders, recommending these actions for the research that they fund. A case study undertaken during the latter half of 2014, among the biological sciences researchers at a South African university, explored the state of data management and archiving at this institution and the readiness of researchers to engage with sharing their digital research data through repositories. It was found that while some researchers were already engaged with digital data archiving in repositories, neither researchers nor the university had implemented systematic research data management.


Sign in / Sign up

Export Citation Format

Share Document