Determining the most effective exercise for gluteal muscle activation in children with cerebral palsy using surface electromyography

2019 ◽  
Vol 70 ◽  
pp. 270-274 ◽  
Author(s):  
Colm Daly ◽  
Emer Lafferty ◽  
Marie Joyce ◽  
Ailish Malone
2018 ◽  
Vol 119 (3) ◽  
pp. 1153-1165 ◽  
Author(s):  
Germana Cappellini ◽  
Francesca Sylos-Labini ◽  
Michael J. MacLellan ◽  
Annalisa Sacco ◽  
Daniela Morelli ◽  
...  

To investigate how early injuries to developing motor regions of the brain affect different forms of gait, we compared the spatiotemporal locomotor patterns during forward (FW) and backward (BW) walking in children with cerebral palsy (CP). Bilateral gait kinematics and EMG activity of 11 pairs of leg muscles were recorded in 14 children with CP (9 diplegic, 5 hemiplegic; 3.0–11.1 yr) and 14 typically developing (TD) children (3.3–11.8 yr). During BW, children with CP showed a significant increase of gait asymmetry in foot trajectory characteristics and limb intersegmental coordination. Furthermore, gait asymmetries, which were not evident during FW in diplegic children, became evident during BW. Factorization of the EMG signals revealed a comparable structure of the motor output during FW and BW in all groups of children, but we found differences in the basic temporal activation patterns. Overall, the results are consistent with the idea that both forms of gait share pattern generation control circuits providing similar (though reversed) kinematic patterns. However, BW requires different muscle activation timings associated with muscle modules, highlighting subtle gait asymmetries in diplegic children, and thus provides a more comprehensive assessment of gait pathology in children with CP. The findings suggest that spatiotemporal asymmetry assessments during BW might reflect an impaired state and/or descending control of the spinal locomotor circuitry and can be used for diagnostic purposes and as complementary markers of gait recovery.NEW & NOTEWORTHY Early injuries to developing motor regions of the brain affect both forward progression and other forms of gait. In particular, backward walking highlights prominent gait asymmetries in children with hemiplegia and diplegia from cerebral palsy and can give a more comprehensive assessment of gait pathology. The observed spatiotemporal asymmetry assessments may reflect both impaired supraspinal control and impaired state of the spinal circuitry.


2020 ◽  
Vol 11 ◽  
Author(s):  
Germana Cappellini ◽  
Francesca Sylos-Labini ◽  
Carla Assenza ◽  
Laura Libernini ◽  
Daniela Morelli ◽  
...  

Surface electromyography (sEMG) can be used to assess the integrity of the neuromuscular system and its impairment in neurological disorders. Here we will consider several issues related to the current clinical applications, difficulties and limited usage of sEMG for the assessment and rehabilitation of children with cerebral palsy. The uniqueness of this methodology is that it can determine hyperactivity or inactivity of selected muscles, which cannot be assessed by other methods. In addition, it can assist for intervention or muscle/tendon surgery acts, and it can evaluate integrated functioning of the nervous system based on multi-muscle sEMG recordings and assess motor pool activation. The latter aspect is especially important for understanding impairments of the mechanisms of neural controllers rather than malfunction of individual muscles. Although sEMG study is an important tool in both clinical research and neurorehabilitation, the results of a survey on the clinical relevance of sEMG in a typical department of pediatric rehabilitation highlighted its limited clinical usage. We believe that this is due to limited knowledge of the sEMG and its neuromuscular underpinnings by many physiotherapists, as a result of lack of emphasis on this important methodology in the courses taught in physical therapy schools. The lack of reference databases or benchmarking software for sEMG analysis may also contribute to the limited clinical usage. Despite the existence of educational and technical barriers to a widespread use of, sEMG does provide important tools for planning and assessment of rehabilitation treatments for children with cerebral palsy.


2021 ◽  
Vol 90 ◽  
pp. 61-62
Author(s):  
E. Flux ◽  
L. Bar-On ◽  
A.I. Buizer ◽  
J. Harlaar ◽  
M.M. van der Krogt

2005 ◽  
Vol 12 (2-3) ◽  
pp. 211-219 ◽  
Author(s):  
Marjorie Hines Woollacott ◽  
Anne Shumway-Cook

In this review we explore studies related to constraints on balance and walking in children with cerebral palsy (CP) and the efficacy of training reactive balance (recovering from a slip induced by a platform displacement) in children with both spastic hemiplegic and diplegic CP. Children with CP show (a) crouched posture, contributing to decreased ability to recover balance (longer time/increased sway); (b) delayed responses in ankle muscles; (c) inappropriate muscle response sequencing; (d) increased coactivation of agonists/antagonists. Constraints on gait include (a) crouched gait; (b) increased co-activation of agonists/antagonists; (c) decreased muscle activation; (d) spasticity. The efficiency of balance recovery can be improved in children with CP, indicated by both a reduction in the total center of pressure path used during balance recovery and in the time to restabilize balance after training. Changes in muscle response characteristics contributing to improved recovery include reductions in time of contraction onset, improved muscle response organization, and reduced co-contraction of agonists/antagonists. Clinical implications include the suggestion that improvement in the ability to recover balance is possible in school age children with CP.


Sign in / Sign up

Export Citation Format

Share Document