Unravelling the landscape evolution process of sedimentary sand sheets and stony deserts in australia with in situ cosmogenic nuclide depth profiles

2006 ◽  
Vol 70 (18) ◽  
pp. A173
Author(s):  
David Fink
2015 ◽  
Vol 27 ◽  
pp. 78-93 ◽  
Author(s):  
Réka-H. Fülöp ◽  
Paul Bishop ◽  
Derek Fabel ◽  
Gordon T. Cook ◽  
Jeremy Everest ◽  
...  

1997 ◽  
Vol 470 ◽  
Author(s):  
R. Schwarz ◽  
A. Dittrich ◽  
S. M. Zhou ◽  
M. Hundhausen ◽  
L. Ley ◽  
...  

ABSTRACTSuicide formation during thermal annealing of thin Pt layers deposited by evaporation onto crystalline silicon substrates was studied by in-situ spectral ellipsometry. As was shown in an earlier study, Pt suicide is formed in a two-step process with intermediate stages of Pt2Si and PtSi at temperatures of about 190 and 240 °C, respectively. We observed a shift of about 15 °C of the di- and monosilicide formation, when the anneal rate was lowered from 3 to 1 K/min. The analysis of the reaction kinetics using the normalized ellipsometric angle δ yields a good fit to the data for different anneal rates with an activation energy of (1.6 ± 0.2) eV. The underlying model of suicide formation through a multilayer system was checked with depth profiles and compositional information obtained from Rutherford Backscattering.


2015 ◽  
Vol 26 ◽  
pp. 56-69 ◽  
Author(s):  
Nathaniel Lifton ◽  
Marc Caffee ◽  
Robert Finkel ◽  
Shasta Marrero ◽  
Kunihiko Nishiizumi ◽  
...  

2017 ◽  
Vol 66 (2) ◽  
pp. 57-68 ◽  
Author(s):  
Lorenz Wüthrich ◽  
Claudio Brändli ◽  
Régis Braucher ◽  
Heinz Veit ◽  
Negar Haghipour ◽  
...  

Abstract. During the Pleistocene, glaciers advanced repeatedly from the Alps onto the Swiss Plateau. Numeric age control for the last glaciation is good and thus the area is well suited to test a method which has so far not been applied to till in Switzerland. In this study, we apply in situ produced cosmogenic 10Be depth profile dating to several till deposits. Three sites lie inside the assumed Last Glacial Maximum (LGM) extent of the Rhône and Aare glaciers (Bern, Deisswil, Steinhof) and two lie outside (Niederbuchsiten, St. Urban). All sites are strongly affected by denudation, and all sites have reached steady state, i.e., the 10Be production is in equilibrium with radioactive decay and denudational losses. Deposition ages can therefore not be well constrained. Assuming constant denudation rates of 5 cm kyr−1, total denudation on the order of 100 cm for sites within the extent of the LGM and up to tens of meters for older moraines are calculated. Denudation events, for example related to periglacial conditions during the LGM, mitigate the need to invoke such massive denudation and could help to explain high 10Be concentrations at great depths, which we here dub pseudo-inheritance. This term should be used to distinguish conceptionally from true inheritance, i.e., high concentrations derived from the catchment.


2021 ◽  
Author(s):  
Emma Lodes ◽  
Dirk Scherler ◽  
Hella Wittmann ◽  
Renee Van Dongen

<p>Rock fracturing induced by tectonic deformation is thought to promote faster denudation in more highly fractured areas by lowering grain size and directing the flow of water. That the density and pattern of fractures in a landscape play a role in controlling erosion and landscape evolution has been known for over a century, but not until recently do we have tools, like cosmogenic nuclides, to quantify erosion rates in places with varying fracture densities. In the Nahuelbuta Range in south-central Chile, we observed that >30-m thick regolith exists next to patches of unweathered bedrock. We hypothesize that the density of fractures dictates the pace and patterns of chemical weathering, regolith conversion, and erosion in the Nahuelbuta Range. To test this, we used in situ cosmogenic <sup>10</sup>Be to obtain denudation rates from amalgamated samples of bedrock, corestones and soils, and measured fracture density and orientation, as well as hillslope boulder size in several sites in the Nahuelbuta Range. We found that more highly fractured areas indeed have higher denudation rates than less fractured areas, and that bedrock denudation rates are ~10 m/Myr while soil denudation rates are ~30 m/Myr, suggesting that soil-covered areas may be sites of higher fracture density at depth. Fractures have orientations that match mapped faults across the Nahuelbuta range, and thus are considered to be tectonically-induced. In addition, both fracture and fault orientations match the orientation of streams incising the range, suggesting that fractures control stream channel orientation by weakening bedrock and thus directing flow.</p>


2020 ◽  
Vol 58 ◽  
pp. 101075
Author(s):  
Ye Yang ◽  
Yun-Chao Lang ◽  
Sheng Xu ◽  
Cong-Qiang Liu ◽  
Li-Feng Cui ◽  
...  

2019 ◽  
Vol 13 (11) ◽  
pp. 2935-2951 ◽  
Author(s):  
Keir A. Nichols ◽  
Brent M. Goehring ◽  
Greg Balco ◽  
Joanne S. Johnson ◽  
Andrew S. Hein ◽  
...  

Abstract. We describe new Last Glacial Maximum (LGM) ice thickness constraints for three locations spanning the Weddell Sea Embayment (WSE) of Antarctica. Samples collected from the Shackleton Range, Pensacola Mountains, and the Lassiter Coast constrain the LGM thickness of the Slessor Glacier, Foundation Ice Stream, and grounded ice proximal to the modern Ronne Ice Shelf edge on the Antarctic Peninsula, respectively. Previous attempts to reconstruct LGM-to-present ice thickness changes around the WSE used measurements of long-lived cosmogenic nuclides, primarily 10Be. An absence of post-LGM apparent exposure ages at many sites led to LGM thickness reconstructions that were spatially highly variable and inconsistent with flow line modelling. Estimates for the contribution of the ice sheet occupying the WSE at the LGM to global sea level since deglaciation vary by an order of magnitude, from 1.4 to 14.1 m of sea level equivalent. Here we use a short-lived cosmogenic nuclide, in situ-produced 14C, which is less susceptible to inheritance problems than 10Be and other long-lived nuclides. We use in situ 14C to evaluate the possibility that sites with no post-LGM exposure ages are biased by cosmogenic nuclide inheritance due to surface preservation by cold-based ice and non-deposition of LGM-aged drift. Our measurements show that the Slessor Glacier was between 310 and up to 655 m thicker than present at the LGM. The Foundation Ice Stream was at least 800 m thicker, and ice on the Lassiter Coast was at least 385 m thicker than present at the LGM. With evidence for LGM thickening at all of our study sites, our in situ 14C measurements indicate that the long-lived nuclide measurements of previous studies were influenced by cosmogenic nuclide inheritance. Our inferred LGM configuration, which is primarily based on minimum ice thickness constraints and thus does not constrain an upper limit, indicates a relatively modest contribution to sea level rise since the LGM of < 4.6 m, and possibly as little as < 1.5 m.


2005 ◽  
Vol 239 (1-2) ◽  
pp. 140-161 ◽  
Author(s):  
Nathaniel A. Lifton ◽  
John W. Bieber ◽  
John M. Clem ◽  
Marc L. Duldig ◽  
Paul Evenson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document