In-situ evolution process understanding from a salan-ligated manganese cluster to supercapacitive application

Nano Research ◽  
2021 ◽  
Author(s):  
Xu Zhang ◽  
Kai Zhao ◽  
Xu Peng ◽  
Mohamedally Kurmoo ◽  
Ming-Hua Zeng
10.1144/sp500 ◽  
2020 ◽  
Vol 500 (1) ◽  
pp. NP-NP
Author(s):  
A. Georgiopoulou ◽  
L. A. Amy ◽  
S. Benetti ◽  
J. D. Chaytor ◽  
M. A. Clare ◽  
...  

This volume focuses on underwater or subaqueous landslides with the overarching goal of understanding how they affect society and the environment. The new research presented here is the result of significant advances made over recent years in directly monitoring submarine landslides, in standardizing global datasets for quantitative analysis, constructing a global database and from leading international research projects. Subaqueous Mass Movements demonstrates the breadth of investigation taking place into subaqueous landslides and shows that, while events like the recent ones in the Indonesian archipelago can be devastating, they are at the smaller end of what the Earth has experienced in the past. Understanding the spectrum of subaqueous landslide processes, and therefore the potential societal impact, requires research across all spatial and temporal scales. This volume delivers a compilation of state-of-the-art papers covering topics from regional landslide databases to advanced techniques for in situ measurements, to numerical modelling of processes and hazards.


2012 ◽  
Vol 16 (11) ◽  
pp. 1783-1786 ◽  
Author(s):  
Yuki Fukui ◽  
Shinichi Oda ◽  
Hiroyuki Suzuki ◽  
Toshikazu Hakogi ◽  
Daisuke Yamada ◽  
...  

2021 ◽  
pp. 130862
Author(s):  
Yi He ◽  
Wenxu Shang ◽  
Meng Ni ◽  
Yiyin Huang ◽  
Hong Zhao ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4626
Author(s):  
Katia Artzt ◽  
Martin Siggel ◽  
Jan Kleinert ◽  
Joerg Riccius ◽  
Guillermo Requena ◽  
...  

The potential of in situ melt pool monitoring (MPM) for parameter development and furthering the process understanding in Laser Powder Bed Fusion (LPBF) of CuCr1Zr was investigated. Commercial MPM systems are currently being developed as a quality monitoring tool with the aim of detecting faulty parts already in the build process and, thus, reducing costs in LPBF. A detailed analysis of coupon specimens allowed two processing windows to be established for a suitably dense material at layer thicknesses of 30 µm and 50 µm, which were subsequently evaluated with two complex thermomechanical-fatigue (TMF) panels. Variations due to the location on the build platform were taken into account for the parameter development. Importantly, integrally averaged MPM intensities showed no direct correlation with total porosities, while the robustness of the melting process, impacted strongly by balling, affected the scattering of the MPM response and can thus be assessed. However, the MPM results, similar to material properties such as porosity, cannot be directly transferred from coupon specimens to components due to the influence of the local part geometry and heat transport on the build platform. Different MPM intensity ranges are obtained on cuboids and TMF panels despite similar LPBF parameters. Nonetheless, besides identifying LPBF parameter windows with a stable process, MPM allowed the successful detection of individual defects on the surface and in the bulk of the large demonstrators and appears to be a suitable tool for quality monitoring during fabrication and non-destructive evaluation of the LPBF process.


Oceans ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 193-214
Author(s):  
Claire E. Reymond ◽  
Sönke Hohn

Marine biomineralization is a globally important biological and geochemical process. Understanding the mechanisms controlling the precipitation of calcium carbonate [CaCO3] within the calcifying fluid of marine organisms, such as corals, crustose coralline algae, and foraminifera, presents one of the most elusive, yet relevant areas of biomineralization research, due to the often-impenetrable ability to measure the process in situ. The precipitation of CaCO3 is assumed to be largely controlled by the saturation state [Ω] of the extracellular calcifying fluid. In this study, we mimicked the typical pH and Ω known for the calcifying fluid in corals, while varying the magnesium, calcium, and carbonate concentrations in six chemo-static growth experiments, thereby mimicking various dissolved inorganic carbon concentration mechanisms and ionic movement into the extracellular calcifying fluid. Reduced mineralization and varied CaCO3 morphologies highlight the inhibiting effect of magnesium regardless of pH and Ω and suggests the importance of strong magnesium removal or calcium concentration mechanisms. In respect to ocean acidification studies, this could allow an explanation for why specific marine calcifiers respond differently to lower saturation states.


2005 ◽  
Vol 5 (5) ◽  
pp. 10097-10124
Author(s):  
P. J. Popp ◽  
T. P. Marcy ◽  
E. J. Jensen ◽  
B. Kärcher ◽  
D. W. Fahey ◽  
...  

Abstract. Airborne in situ measurements over the eastern Pacific Ocean in January 2004 have revealed a new category of nitric acid (HNO3)-containing particles in the tropical lower stratosphere. These particles are most likely composed of nitric acid trihydrate (NAT). They were intermittently observed in a narrow layer above the tropopause (18±0.1 km) and over a broad geographic extent (>1100 km). In contrast to the background liquid sulfate aerosol, these particles are solid, much larger (1.7–4.7 µm vs. 0.1 µm in diameter), and significantly less abundant (<10-4 cm-3 vs. 10 cm-3). Microphysical trajectory models suggest that the NAT particles grow over a 6–14 day period in supersaturated air that remains close to the tropical tropopause and might be a common feature in the tropics. The small number density of these particles implies a highly selective or slow nucleation process. Understanding the formation of solid NAT particles in the tropics could improve our understanding of stratospheric nucleation processes and, therefore, dehydration and denitrification.


Author(s):  
David Virant ◽  
Ilijana Vojnovic ◽  
Jannik Winkelmeier ◽  
Marc Endesfelder ◽  
Bartosz Turkowyd ◽  
...  

AbstractThe key to ensuring proper chromosome segregation during mitosis is the kinetochore complex. This large and tightly regulated multi-protein complex links the centromeric chromatin to the microtubules attached to the spindle pole body and as such leads the segregation process. Understanding the architecture, function and regulation of this vital complex is therefore essential. However, due to its complexity and dynamics, only its individual subcomplexes could be studied in high-resolution structural detail so far.In this study we construct a nanometer-precise in situ map of the human-like regional kinetochore of Schizosaccharomyces pombe (S. pombe) using multi-color single-molecule localization microscopy (SMLM). We measure each kinetochore protein of interest (POI) in conjunction with two reference proteins, cnp1CENP-A at the centromere and sad1 at the spindle pole. This arrangement allows us to determine the cell cycle and in particularly the mitotic plane, and to visualize individual centromere regions separately. From these data, we determine protein distances within the complex using Bayesian inference, establish the stoichiometry of each POI for individual chromosomes and, consequently, build an in situ kinetochore model for S.pombe with so-far unprecedented precision. Being able to quantify the kinetochore proteins within the full in situ kinetochore structure, we provide valuable new insights in the S.pombe kinetochore architecture.


2017 ◽  
Vol 127 ◽  
pp. 35-40 ◽  
Author(s):  
Yuanjian Hong ◽  
Chengshuang Zhou ◽  
Yuanyuan Zheng ◽  
Lin Zhang ◽  
Jinyang Zheng ◽  
...  

2016 ◽  
Author(s):  
Conrad Jackisch ◽  
Lisa Angermann ◽  
Niklas Allroggen ◽  
Matthias Sprenger ◽  
Theresa Blume ◽  
...  

Abstract. Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. Despite their significance and omnipresence the related processes are challenging hydrological exploration, monitoring, modeling and theory. One reason for this is that flow processes at high velocities are difficult to observe in the subsurface. Another reason is that advective flow is channeled in distinct connected structures several orders of magnitude smaller than commonly resolved observation volumes. This is the second part of a companion paper with a focus on \\textit{in situ} experimental exploration of rapid subsurface flow. Complementary to the temporal dynamics, this study looks into the identification of spatially organized structures. We present a bottom-up approach with point-scale measurements, plot-scale multi-tracer experiments and a hillslope-scale irrigation experiment. Special emphasis is given to the employed 2D and 3D time-lapse ground penetrating radar monitoring under field conditions on forested, young soils on periglacial slope deposits. The study highlights the difficulty to draw conclusions beyond overall heterogeneity from point observations in a basically unknown and structured domain. We also spotlight the challenge to identify relevant structures based on a single quasi-static exploration. A coherent combination of different hydrological and geophysical methods to monitor the system under driven conditions was key to reduce ambiguity in the identification of hydrologically relevant structures and the overall process understanding.


Sign in / Sign up

Export Citation Format

Share Document