Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications

2005 ◽  
Vol 239 (1-2) ◽  
pp. 140-161 ◽  
Author(s):  
Nathaniel A. Lifton ◽  
John W. Bieber ◽  
John M. Clem ◽  
Marc L. Duldig ◽  
Paul Evenson ◽  
...  
2021 ◽  
Author(s):  
◽  
Abby Jade Burdis

<p>New Zealand’s tectonically and climatically dynamic environment generates erosion rates that outstrip global averages by up to ten times in some locations. In order to assess recent changes in erosion rate, and also to predict future erosion dynamics, it is important to quantify long-term, background erosion. Current research on erosion in New Zealand predominantly covers short-term (100 yrs) erosion dynamics and Myr dynamics from thermochronological proxy data. Without competent medium-term denudation data for New Zealand, it is uncertain which variables (climate, anthropogenic disturbance of the landscape, tectonic uplift, lithological, or geomorphic characteristics) exert the dominant control on denudation in New Zealand. Spatially-averaged cosmogenic nuclide analysis can effectively offer this information by providing averaged rates of denudation on millennial timescales without the biases and limitations of short-term erosion methods.  Basin-averaged denudation rates were obtained in the Nelson/Tasman region, New Zealand, from analysis of concentrations of meteoric ¹⁰Be in silt and in-situ produced ¹⁰Be in quartz. The measured denudation rates integrate over ~2750 yrs (in-situ) and ~1200 yrs (meteoric). Not only do the ¹⁰Be records produce erosion rates that are remarkably consistent with each other, but they are also independent of topographic metrics. Denudation rates range from ~112 – 298 t km⁻² yr⁻¹, with the exception of one basin which is eroding at 600 - 800 t km⁻² yr⁻¹. The homogeneity of rates and absence of a significant correlation with geomorphic or lithological characteristics could indicate that the Nelson/Tasman landscape is in (or approaching) a topographic steady state.  Millennial term (¹⁰Be-derived) denudation rates are more rapid than those inferred from other conventional methods in the same region (~50 – 200 t km⁻² yr⁻¹). This is likely the result of the significant contribution of low frequency, high magnitude erosive events to overall erosion of the region. Both in-situ and meteoric ¹⁰Be analyses have the potential to provide competent millennial term estimates of natural background rates of erosion. This will allow for the assessment of geomorphic-scale impacts such as topography, tectonics, climate, and lithology on rates of denudation for the country where many conventional methods do not. Cosmogenic nuclides offer the ability to understand the response of the landscape to these factors in order to make confident erosion predictions for the future.</p>


1968 ◽  
Vol 46 (10) ◽  
pp. S887-S891 ◽  
Author(s):  
V. K. Balasubrahmanyan ◽  
D. E. Hagge ◽  
F. B. McDonald

The results of the continuous monitoring of the intensity of cosmic rays (of energy > 50 MeV) with identical G-M counter telescopes flown in satellites IMP I, II, and III and OGO-I are presented along with the differential spectrum studies obtained from balloon flights at Fort Churchill and from satellites. A comparison of the time behavior of the G-M counter data with Deep River neutron monitor data suggests the presence of a "hysteresis" type of behavior due to spectral changes occurring near solar minimum. The existence of this "hysteresis" suggests that the radial gradient of cosmic rays near the earth could be much smaller than the ~ 10%/AU obtained by O'Gallagher and Simpson (1967) and O'Gallagher (1967) at higher energies. The long-term intensity variation of cosmic rays seems to follow the Ap index rather closely in phase, in contrast to sunspot numbers which display a pronounced phase difference with cosmic-ray intensity. The differential spectra of protons and He nuclei have been analyzed in terms of two different models for the propagation in the interplanetary medium. The modulations indicated by the present data seem to disagree with a diffusion coefficient proportional to βR where β and R are the velocity and rigidity of the particle respectively (Jokipii 1966).


Geochronology ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 411-423
Author(s):  
Travis Clow ◽  
Jane K. Willenbring ◽  
Mirjam Schaller ◽  
Joel D. Blum ◽  
Marcus Christl ◽  
...  

Abstract. Meteoric 10Be (10Bemet) concentrations in soil profiles have great potential as a geochronometer and a tracer of Earth surface processes, particularly in fine-grained soils lacking quartz that would preclude the use of in situ produced 10Be (10Bein situ). One prerequisite for using this technique for accurately calculating rates and dates is constraining the delivery, or flux, of 10Bemet to a site. However, few studies to date have quantified long-term (i.e., millennial) delivery rates, and none have determined a delivery rate for an eroding soil. In this study, we compared existing concentrations of 10Bein situ with new measurements of 10Bemet in eroding soils sampled from the same depth profiles to calibrate a long-term 10Bemet delivery rate. We did so on the Pinedale (∼ 21–25 kyr) and Bull Lake (∼ 140 kyr) glacial moraines at Fremont Lake, Wyoming (USA), where age, grain sizes, weathering indices, and soil properties are known, as are erosion and denudation rates calculated from 10Bein situ. After ensuring sufficient beryllium retention in each profile, solving for the delivery rate of 10Bemet, and normalizing for paleomagnetic and solar intensity variations over the Holocene, we calculate 10Bemet fluxes of 1.46 (±0.20) × 106 atoms cm−2 yr−1 and 1.30 (±0.48) × 106 atoms cm−2 yr−1 to the Pinedale and Bull Lake moraines, respectively, and compare these values to two widely used 10Bemet delivery rate estimation methods that substantially differ for this site. Accurately estimating the 10Bemet flux using these methods requires a consideration of spatial scale and temporally varying parameters (i.e., paleomagnetic field intensity, solar modulation) to ensure the most realistic estimates of 10Bemet-derived erosion rates in future studies.


2021 ◽  
Author(s):  
◽  
Abby Jade Burdis

<p>New Zealand’s tectonically and climatically dynamic environment generates erosion rates that outstrip global averages by up to ten times in some locations. In order to assess recent changes in erosion rate, and also to predict future erosion dynamics, it is important to quantify long-term, background erosion. Current research on erosion in New Zealand predominantly covers short-term (100 yrs) erosion dynamics and Myr dynamics from thermochronological proxy data. Without competent medium-term denudation data for New Zealand, it is uncertain which variables (climate, anthropogenic disturbance of the landscape, tectonic uplift, lithological, or geomorphic characteristics) exert the dominant control on denudation in New Zealand. Spatially-averaged cosmogenic nuclide analysis can effectively offer this information by providing averaged rates of denudation on millennial timescales without the biases and limitations of short-term erosion methods.  Basin-averaged denudation rates were obtained in the Nelson/Tasman region, New Zealand, from analysis of concentrations of meteoric ¹⁰Be in silt and in-situ produced ¹⁰Be in quartz. The measured denudation rates integrate over ~2750 yrs (in-situ) and ~1200 yrs (meteoric). Not only do the ¹⁰Be records produce erosion rates that are remarkably consistent with each other, but they are also independent of topographic metrics. Denudation rates range from ~112 – 298 t km⁻² yr⁻¹, with the exception of one basin which is eroding at 600 - 800 t km⁻² yr⁻¹. The homogeneity of rates and absence of a significant correlation with geomorphic or lithological characteristics could indicate that the Nelson/Tasman landscape is in (or approaching) a topographic steady state.  Millennial term (¹⁰Be-derived) denudation rates are more rapid than those inferred from other conventional methods in the same region (~50 – 200 t km⁻² yr⁻¹). This is likely the result of the significant contribution of low frequency, high magnitude erosive events to overall erosion of the region. Both in-situ and meteoric ¹⁰Be analyses have the potential to provide competent millennial term estimates of natural background rates of erosion. This will allow for the assessment of geomorphic-scale impacts such as topography, tectonics, climate, and lithology on rates of denudation for the country where many conventional methods do not. Cosmogenic nuclides offer the ability to understand the response of the landscape to these factors in order to make confident erosion predictions for the future.</p>


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Lisdelys González-Rodríguez ◽  
Amauri Pereira de Oliveira ◽  
Lien Rodríguez-López ◽  
Jorge Rosas ◽  
David Contreras ◽  
...  

Ultraviolet radiation is a highly energetic component of the solar spectrum that needs to be monitored because is harmful to life on Earth, especially in areas where the ozone layer has been depleted, like Chile. This work is the first to address the long-term (five-year) behaviour of ultraviolet erythemal radiation (UVER) in Santiago, Chile (33.5° S, 70.7° W, 500 m) using in situ measurements and empirical modelling. Observations indicate that to alert the people on the risks of UVER overexposure, it is necessary to use, in addition to the currently available UV index (UVI), three more erythema indices: standard erythemal doses (SEDs), minimum erythemal doses (MEDs), and sun exposure time (tery). The combination of UVI, SEDs, MEDs, and tery shows that in Santiago, individuals with skin types III and IV are exposed to harmfully high UVER doses for 46% of the time that UVI indicates is safe. Empirical models predicted hourly and daily values UVER in Santiago with great accuracy and can be applied to other Chilean urban areas with similar climate. This research inspires future advances in reconstructing large datasets to analyse the UVER in Central Chile, its trends, and its changes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 605
Author(s):  
Marie-Emérentienne Cagnon ◽  
Silvio Curia ◽  
Juliette Serindoux ◽  
Jean-Manuel Cros ◽  
Feifei Ng ◽  
...  

This article describes the utilization of (methoxy)poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) ((m)PEG–PTMC) diblock and triblock copolymers for the formulation of in situ forming depot long-acting injectables by solvent exchange. The results shown in this manuscript demonstrate that it is possible to achieve long-term drug deliveries from suspension formulations prepared with these copolymers, with release durations up to several months in vitro. The utilization of copolymers with different PEG and PTMC molecular weights affords to modulate the release profile and duration. A pharmacokinetic study in rats with meloxicam confirmed the feasibility of achieving at least 28 days of sustained delivery by using this technology while showing good local tolerability in the subcutaneous environment. The characterization of the depots at the end of the in vivo study suggests that the rapid phase exchange upon administration and the surface erosion of the resulting depots are driving the delivery kinetics from suspension formulations. Due to the widely accepted utilization of meloxicam as an analgesic drug for animal care, the results shown in this article are of special interest for the development of veterinary products aiming at a very long-term sustained delivery of this therapeutic molecule.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


Sign in / Sign up

Export Citation Format

Share Document