Estimating cumulative soil accumulation rates with in situ-produced cosmogenic nuclide depth profiles

Author(s):  
William M Phillips
2015 ◽  
Vol 27 ◽  
pp. 78-93 ◽  
Author(s):  
Réka-H. Fülöp ◽  
Paul Bishop ◽  
Derek Fabel ◽  
Gordon T. Cook ◽  
Jeremy Everest ◽  
...  

1997 ◽  
Vol 470 ◽  
Author(s):  
R. Schwarz ◽  
A. Dittrich ◽  
S. M. Zhou ◽  
M. Hundhausen ◽  
L. Ley ◽  
...  

ABSTRACTSuicide formation during thermal annealing of thin Pt layers deposited by evaporation onto crystalline silicon substrates was studied by in-situ spectral ellipsometry. As was shown in an earlier study, Pt suicide is formed in a two-step process with intermediate stages of Pt2Si and PtSi at temperatures of about 190 and 240 °C, respectively. We observed a shift of about 15 °C of the di- and monosilicide formation, when the anneal rate was lowered from 3 to 1 K/min. The analysis of the reaction kinetics using the normalized ellipsometric angle δ yields a good fit to the data for different anneal rates with an activation energy of (1.6 ± 0.2) eV. The underlying model of suicide formation through a multilayer system was checked with depth profiles and compositional information obtained from Rutherford Backscattering.


2015 ◽  
Vol 26 ◽  
pp. 56-69 ◽  
Author(s):  
Nathaniel Lifton ◽  
Marc Caffee ◽  
Robert Finkel ◽  
Shasta Marrero ◽  
Kunihiko Nishiizumi ◽  
...  

2017 ◽  
Vol 66 (2) ◽  
pp. 57-68 ◽  
Author(s):  
Lorenz Wüthrich ◽  
Claudio Brändli ◽  
Régis Braucher ◽  
Heinz Veit ◽  
Negar Haghipour ◽  
...  

Abstract. During the Pleistocene, glaciers advanced repeatedly from the Alps onto the Swiss Plateau. Numeric age control for the last glaciation is good and thus the area is well suited to test a method which has so far not been applied to till in Switzerland. In this study, we apply in situ produced cosmogenic 10Be depth profile dating to several till deposits. Three sites lie inside the assumed Last Glacial Maximum (LGM) extent of the Rhône and Aare glaciers (Bern, Deisswil, Steinhof) and two lie outside (Niederbuchsiten, St. Urban). All sites are strongly affected by denudation, and all sites have reached steady state, i.e., the 10Be production is in equilibrium with radioactive decay and denudational losses. Deposition ages can therefore not be well constrained. Assuming constant denudation rates of 5 cm kyr−1, total denudation on the order of 100 cm for sites within the extent of the LGM and up to tens of meters for older moraines are calculated. Denudation events, for example related to periglacial conditions during the LGM, mitigate the need to invoke such massive denudation and could help to explain high 10Be concentrations at great depths, which we here dub pseudo-inheritance. This term should be used to distinguish conceptionally from true inheritance, i.e., high concentrations derived from the catchment.


1995 ◽  
Vol 21 ◽  
pp. 139-143 ◽  
Author(s):  
J.J. Van Roijen ◽  
K. van der Borg ◽  
A.F.M. De Jong ◽  
J. Oerlemans

Shallow ice cores from an Antarctic blue-ice area at Scharffenbergbotnen were l4C-analyzed using a dry-extraction technique and accelerator mass spectrometry. The in situ production was determined from the 14CO component and used to deduce the natural 14CO2 component. The ages were measured at 10 000 ± 3000 BP. The accumulation and ablation rates determined from the in situ production are 7–20 and 10 cm a−1. respectively, showing agreement with field observations. The derived ages and air-yield data show a nearby origin for the surface ice.


2019 ◽  
Vol 13 (11) ◽  
pp. 2935-2951 ◽  
Author(s):  
Keir A. Nichols ◽  
Brent M. Goehring ◽  
Greg Balco ◽  
Joanne S. Johnson ◽  
Andrew S. Hein ◽  
...  

Abstract. We describe new Last Glacial Maximum (LGM) ice thickness constraints for three locations spanning the Weddell Sea Embayment (WSE) of Antarctica. Samples collected from the Shackleton Range, Pensacola Mountains, and the Lassiter Coast constrain the LGM thickness of the Slessor Glacier, Foundation Ice Stream, and grounded ice proximal to the modern Ronne Ice Shelf edge on the Antarctic Peninsula, respectively. Previous attempts to reconstruct LGM-to-present ice thickness changes around the WSE used measurements of long-lived cosmogenic nuclides, primarily 10Be. An absence of post-LGM apparent exposure ages at many sites led to LGM thickness reconstructions that were spatially highly variable and inconsistent with flow line modelling. Estimates for the contribution of the ice sheet occupying the WSE at the LGM to global sea level since deglaciation vary by an order of magnitude, from 1.4 to 14.1 m of sea level equivalent. Here we use a short-lived cosmogenic nuclide, in situ-produced 14C, which is less susceptible to inheritance problems than 10Be and other long-lived nuclides. We use in situ 14C to evaluate the possibility that sites with no post-LGM exposure ages are biased by cosmogenic nuclide inheritance due to surface preservation by cold-based ice and non-deposition of LGM-aged drift. Our measurements show that the Slessor Glacier was between 310 and up to 655 m thicker than present at the LGM. The Foundation Ice Stream was at least 800 m thicker, and ice on the Lassiter Coast was at least 385 m thicker than present at the LGM. With evidence for LGM thickening at all of our study sites, our in situ 14C measurements indicate that the long-lived nuclide measurements of previous studies were influenced by cosmogenic nuclide inheritance. Our inferred LGM configuration, which is primarily based on minimum ice thickness constraints and thus does not constrain an upper limit, indicates a relatively modest contribution to sea level rise since the LGM of < 4.6 m, and possibly as little as < 1.5 m.


2005 ◽  
Vol 239 (1-2) ◽  
pp. 140-161 ◽  
Author(s):  
Nathaniel A. Lifton ◽  
John W. Bieber ◽  
John M. Clem ◽  
Marc L. Duldig ◽  
Paul Evenson ◽  
...  

Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 201-206 ◽  
Author(s):  
P Naysmith ◽  
G T Cook ◽  
W M Phillips ◽  
N A Lifton ◽  
R Anderson

Radiocarbon is produced within minerals at the earth's surface (in situ production) by a number of spallation reactions. Its relatively short half-life of 5730 yr provides us with a unique cosmogenic nuclide tool for the measurement of rapid erosion rates (>10−3 cm yr−1) and events occurring over the past 25 kyr. At SUERC, we have designed and built a vacuum system to extract 14C from quartz which is based on a system developed at the University of Arizona. This system uses resistance heating of samples to a temperature of approximately 1100° in the presence of lithium metaborate (LiBO2) to dissolve the quartz and liberate any carbon present. During extraction, the carbon is oxidized to CO2 in an O2 atmosphere so that it may be collected cryogenically. The CO2 is subsequently purified and converted to graphite for accelerator mass spectrometry (AMS) measurement. One of the biggest problems in measuring in situ 14C is establishing a low and reproducible system blank and efficient extraction of the in situ 14C component. Here, we present initial data for 14C-free CO2, derived from geological carbonate and added to the vacuum system to determine the system blank. Shielded quartz samples (which should be 14C free) and a surface quartz sample routinely analyzed at the University of Arizona were also analyzed at SUERC, and the data compared with values derived from the University of Arizona system.


2015 ◽  
Vol 26 ◽  
pp. 44-55 ◽  
Author(s):  
David C. Argento ◽  
John O. Stone ◽  
Robert C. Reedy ◽  
Keran O'Brien

Sign in / Sign up

Export Citation Format

Share Document