scholarly journals Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

2017 ◽  
Vol 201 ◽  
pp. 410-426 ◽  
Author(s):  
David G. Weisz ◽  
Benjamin Jacobsen ◽  
Naomi E. Marks ◽  
Kim B. Knight ◽  
Brett H. Isselhardt ◽  
...  
Keyword(s):  
2022 ◽  
Vol 243 ◽  
pp. 106796
Author(s):  
Josh Wimpenny ◽  
Gary R. Eppich ◽  
Naomi Marks ◽  
Frederick Ryerson ◽  
Kim B. Knight

2018 ◽  
Vol 223 ◽  
pp. 377-388 ◽  
Author(s):  
David G. Weisz ◽  
Benjamin Jacobsen ◽  
Naomi E. Marks ◽  
Kim B. Knight ◽  
Brett H. Isselhardt ◽  
...  

2020 ◽  
Author(s):  
Shahar Shani-Kadmiel ◽  
Gil Averbuch ◽  
Pieter Smets ◽  
Jelle Assink ◽  
Läslo Evers

<p>The amplitude of ground motions caused by earthquakes and subsurface explosions generally decreases with distance from the epicenter. However, in the near-source region, other factors, e.g., near surface geology, topography, and the source radiation pattern, may significantly vary the amplitude of ground motions. Although source location and magnitude (or yield), can be rapidly determined using distant seismic stations, without a dense seismological network in the epicentral region, the ability to resolve such variations is limited.</p><p>Besides seismic waves, earthquakes and subsurface explosions generate infrasound, i.e., inaudible acoustic waves in the atmosphere. The mechanical ground motions from such sources, including the effects from the above mentioned factors, are encapsulated by the acoustic pressure perturbations over the source region. Due to the low frequency nature of infrasound and facilitated by waveguides in the atmosphere, such perturbations propagate over long ranges with limited attenuation and are detected at ground-based stations. In this work we demonstrate a method for resolving ground motions and the source mechanism from remotely detected infrasound. This is illustrated for the 2010 Mw 7.0 Port-au-Prince, Haiti earthquake, and the 6th and largest nuclear test conducted by the Democratic People's Republic of Korea in 2017.</p><p>Such observations are made possible by: (1) An advanced array processing technique that enables the detection of coherent wavefronts, even when amplitudes are below the noise level, and (2) A backprojection technique that maps infrasound detections in time to their origin on the Earth's surface.</p><p>Infrasound measurements are conducted globally for the verification of the Comprehensive Nuclear-Test-Ban Treaty and together with regional infrasound networks allow for an unprecedented global coverage. This makes infrasound as an earthquake disaster mitigation technique feasible for the first time and contributes to the Treaty's verification capacity.</p>


2014 ◽  
Vol 302 (1) ◽  
pp. 593-609 ◽  
Author(s):  
Gary R. Eppich ◽  
Kim B. Knight ◽  
Timothy W. Jacomb-Hood ◽  
Gregory D. Spriggs ◽  
Ian D. Hutcheon

1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


Author(s):  
Naresh N. Thadhani ◽  
Thad Vreeland ◽  
Thomas J. Ahrens

A spherically-shaped, microcrystalline Ni-Ti alloy powder having fairly nonhomogeneous particle size distribution and chemical composition was consolidated with shock input energy of 316 kJ/kg. In the process of consolidation, shock energy is preferentially input at particle surfaces, resulting in melting of near-surface material and interparticle welding. The Ni-Ti powder particles were 2-60 μm in diameter (Fig. 1). About 30-40% of the powder particles were Ni-65wt% and balance were Ni-45wt%Ti (estimated by EMPA).Upon shock compaction, the two phase Ni-Ti powder particles were bonded together by the interparticle melt which rapidly solidified, usually to amorphous material. Fig. 2 is an optical micrograph (in plane of shock) of the consolidated Ni-Ti alloy powder, showing the particles with different etching contrast.


Author(s):  
R.C. Dickenson ◽  
K.R. Lawless

In thermal oxidation studies, the structure of the oxide-metal interface and the near-surface region is of great importance. A technique has been developed for constructing cross-sectional samples of oxidized aluminum alloys, which reveal these regions. The specimen preparation procedure is as follows: An ultra-sonic drill is used to cut a 3mm diameter disc from a 1.0mm thick sheet of the material. The disc is mounted on a brass block with low-melting wax, and a 1.0mm hole is drilled in the disc using a #60 drill bit. The drill is positioned so that the edge of the hole is tangent to the center of the disc (Fig. 1) . The disc is removed from the mount and cleaned with acetone to remove any traces of wax. To remove the cold-worked layer from the surface of the hole, the disc is placed in a standard sample holder for a Tenupol electropolisher so that the hole is in the center of the area to be polished.


Author(s):  
S. H. Chen

Sn has been used extensively as an n-type dopant in GaAs grown by molecular-beam epitaxy (MBE). The surface accumulation of Sn during the growth of Sn-doped GaAs has been observed by several investigators. It is still not clear whether the accumulation of Sn is a kinetically hindered process, as proposed first by Wood and Joyce, or surface segregation due to thermodynamic factors. The proposed donor-incorporation mechanisms were based on experimental results from such techniques as secondary ion mass spectrometry, Auger electron spectroscopy, and C-V measurements. In the present study, electron microscopy was used in combination with cross-section specimen preparation. The information on the morphology and microstructure of the surface accumulation can be obtained in a fine scale and may confirm several suggestions from indirect experimental evidence in the previous studies.


Sign in / Sign up

Export Citation Format

Share Document