Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea)

2018 ◽  
Vol 239 ◽  
pp. 255-274 ◽  
Author(s):  
Karen Marie Hilligsøe ◽  
Jørn Bo Jensen ◽  
Timothy G. Ferdelman ◽  
Henrik Fossing ◽  
Laura Lapham ◽  
...  
2013 ◽  
Vol 10 (1) ◽  
pp. 81-99 ◽  
Author(s):  
W. Gülzow ◽  
G. Rehder ◽  
J. Schneider v. Deimling ◽  
T. Seifert ◽  
Z. Tóth

Abstract. Methane and carbon dioxide were measured with an autonomous and continuous running system on a ferry line crossing the Baltic Sea on a 2–3 day interval from the Mecklenburg Bight to the Gulf of Finland in 2010. Surface methane saturations show great seasonal differences in shallow regions like the Mecklenburg Bight (103–507%) compared to deeper regions like the Gotland Basin (96–161%). The influence of controlling parameters like temperature, wind, mixing depth and processes like upwelling, mixing of the water column and sedimentary methane emissions on methane oversaturation and emission to the atmosphere are investigated. Upwelling was found to influence methane surface concentrations in the area of Gotland significantly during the summer period. In February 2010, an event of elevated methane concentrations in the surface water and water column of the Arkona Basin was observed, which could be linked to a wind-derived water level change as a potential triggering mechanism. The Baltic Sea is a source of methane to the atmosphere throughout the year, with highest fluxes occurring during the winter season. Stratification was found to promote the formation of a methane reservoir in deeper regions like Gulf of Finland or Bornholm Basin, which leads to long lasting elevated methane concentrations and enhanced methane fluxes, when mixed to the surface during mixed layer deepening in autumn and winter. Methane concentrations and fluxes from shallow regions like the Mecklenburg Bight are predominantly controlled by sedimentary production and consumption of methane, wind events and the change in temperature-dependent solubility of methane in the surface water. Methane fluxes vary significantly in shallow regions (e.g. Mecklenburg Bight) and regions with a temporal stratification (e.g. Bornholm Basin, Gulf of Finland). On the contrary, areas with a permanent stratification like the Gotland Basin show only small seasonal fluctuations in methane fluxes.


2012 ◽  
Vol 9 (8) ◽  
pp. 9897-9944 ◽  
Author(s):  
W. Gülzow ◽  
G. Rehder ◽  
J. Schneider v. Deimling ◽  
T. Seifert ◽  
Zs. Tóth

Abstract. Methane and carbon dioxide were measured with an autonomous and continuous running system on a ferry line crossing the Baltic Sea on a 2–3 day interval from the Mecklenburg Bight to the Gulf of Finland in 2010. Surface methane saturations show great seasonal differences in shallow regions like the Mecklenburg Bight (103–507%) compared to deeper regions like the Gotland Basin (96–161%). The influence of controlling parameters like temperature, wind, mixing depth and processes like upwelling, mixing of the water column and sedimentary methane emissions on methane oversaturation and emission to the atmosphere are investigated. Upwelling was found to influence methane surface concentrations in the area of Gotland significantly during the summer period. In February 2010, an event of elevated methane concentrations in the surface water and water column of the Arkona Basin was observed, which could be linked to a wind-derived water level change as a potential triggering mechanism. The Baltic Sea is a source of methane to the atmosphere throughout the year, with highest fluxes during the winter season. Stratification was found to intensify the formation of a methane reservoir in deeper regions like Gulf of Finland or Bornholm Basin, which leads to long lasting elevated methane concentrations and enhanced methane fluxes, when mixed to the surface during mixed layer deepening in autumn and winter. Methane concentrations and fluxes from shallow regions like the Mecklenburg Bight are rather controlled by sedimentary production and consumption of methane, wind events and the change in temperature-dependent solubility of methane in the surface water. Methane fluxes vary significantly in shallow regions (e.g. Mecklenburg Bight) and regions with a temporal stratification (e.g. Bornholm Basin, Gulf of Finland). On the contrary, areas with a permanent stratification like the Gotland Basin show only small seasonal fluctuations in methane fluxes.


2009 ◽  
Vol 63 (4) ◽  
pp. 317-326 ◽  
Author(s):  
Kristina Barz ◽  
Hans-Jürgen Hirche
Keyword(s):  

2004 ◽  
Vol 26 (6) ◽  
pp. 659-668 ◽  
Author(s):  
Frank C. Hansen ◽  
Christian Möllmann ◽  
Ulrike Schütz ◽  
Hans-Harald Hinrichsen

2019 ◽  
Vol 7 ◽  
Author(s):  
Lucía Gutiérrez-Loza ◽  
Marcus B. Wallin ◽  
Erik Sahlée ◽  
Erik Nilsson ◽  
Hermann W. Bange ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Jordan T. Bird ◽  
Eric D. Tague ◽  
Laura Zinke ◽  
Jenna M. Schmidt ◽  
Andrew D. Steen ◽  
...  

ABSTRACTEnergy-starved microbes in deep marine sediments subsist at near-zero growth for thousands of years, yet the mechanisms for their subsistence are unknown because no model strains have been cultivated from most of these groups. We investigated Baltic Sea sediments with single-cell genomics, metabolomics, metatranscriptomics, and enzyme assays to identify possible subsistence mechanisms employed by unculturedAtribacteria,Aminicenantes,Actinobacteriagroup OPB41,Aerophobetes,Chloroflexi,Deltaproteobacteria,Desulfatiglans,Bathyarchaeota, andEuryarchaeotamarine group II lineages. Some functions appeared to be shared by multiple lineages, such as trehalose production and NAD+-consuming deacetylation, both of which have been shown to increase cellular life spans in other organisms by stabilizing proteins and nucleic acids, respectively. Other possible subsistence mechanisms differed between lineages, possibly providing them different physiological niches. Enzyme assays and transcripts suggested thatAtribacteriaandActinobacteriagroup OPB41 catabolized sugars, whereasAminicenantesandAtribacteriacatabolized peptides. Metabolite and transcript data suggested thatAtribacteriautilized allantoin, possibly as an energetic substrate or chemical protectant, and also possessed energy-efficient sodium pumps.Atribacteriasingle-cell amplified genomes (SAGs) recruited transcripts for full pathways for the production of all 20 canonical amino acids, and the gene for amino acid exporter YddG was one of their most highly transcribed genes, suggesting that they may benefit from metabolic interdependence with other cells. Subsistence of uncultured phyla in deep subsurface sediments may occur through shared strategies of using chemical protectants for biomolecular stabilization, but also by differentiating into physiological niches and metabolic interdependencies.IMPORTANCEMuch of life on Earth exists in a very slow-growing state, with microbes from deeply buried marine sediments representing an extreme example. These environments are like natural laboratories that have run multi-thousand-year experiments that are impossible to perform in a laboratory. We borrowed some techniques that are commonly used in laboratory experiments and applied them to these natural samples to make hypotheses about how these microbes subsist for so long at low activity. We found that some methods for stabilizing proteins and nucleic acids might be used by many members of the community. We also found evidence for niche differentiation strategies, and possibly cross-feeding, suggesting that even though they are barely growing, complex ecological interactions continue to occur over ultralong timescales.


Geology ◽  
2009 ◽  
Vol 37 (3) ◽  
pp. 235-238 ◽  
Author(s):  
A.W. Dale ◽  
P. Regnier ◽  
P. Van Cappellen ◽  
H. Fossing ◽  
J.B. Jensen ◽  
...  

2006 ◽  
Vol 149 (6) ◽  
pp. 1417-1429 ◽  
Author(s):  
Janna Peters ◽  
Jasmin Renz ◽  
Justus van Beusekom ◽  
Maarten Boersma ◽  
Wilhelm Hagen

Sign in / Sign up

Export Citation Format

Share Document