scholarly journals RNA-Seq analysis and whole genome DNA-binding profile of the Vibrio cholerae histone-like nucleoid structuring protein (H-NS)

Genomics Data ◽  
2015 ◽  
Vol 5 ◽  
pp. 147-150 ◽  
Author(s):  
Julio C. Ayala ◽  
Hongxia Wang ◽  
Jorge A. Benitez ◽  
Anisia J. Silva
2017 ◽  
Vol 77 (23) ◽  
pp. 6538-6550 ◽  
Author(s):  
Dylan Z. Kelley ◽  
Emily L. Flam ◽  
Evgeny Izumchenko ◽  
Ludmila V. Danilova ◽  
Hildegard A. Wulf ◽  
...  

ChemInform ◽  
2014 ◽  
Vol 45 (49) ◽  
pp. no-no
Author(s):  
Xiao Cai ◽  
Kevin Ng ◽  
Harmanpreet Panesar ◽  
Seong-Jin Moon ◽  
Maria Paredes ◽  
...  

2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Katherine L. James ◽  
Thushan I. de Silva ◽  
Katherine Brown ◽  
Hilton Whittle ◽  
Stephen Taylor ◽  
...  

ABSTRACTAccurate determination of the genetic diversity present in the HIV quasispecies is critical for the development of a preventative vaccine: in particular, little is known about viral genetic diversity for the second type of HIV, HIV-2. A better understanding of HIV-2 biology is relevant to the HIV vaccine field because a substantial proportion of infected people experience long-term viral control, and prior HIV-2 infection has been associated with slower HIV-1 disease progression in coinfected subjects. The majority of traditional and next-generation sequencing methods have relied on target amplification prior to sequencing, introducing biases that may obscure the true signals of diversity in the viral population. Additionally, target enrichment through PCR requiresa priorisequence knowledge, which is lacking for HIV-2. Therefore, a target enrichment free method of library preparation would be valuable for the field. We applied an RNA shotgun sequencing (RNA-Seq) method without PCR amplification to cultured viral stocks and patient plasma samples from HIV-2-infected individuals. Libraries generated from total plasma RNA were analyzed with a two-step pipeline: (i)de novogenome assembly, followed by (ii) read remapping. By this approach, whole-genome sequences were generated with a 28× to 67× mean depth of coverage. Assembled reads showed a low level of GC bias, and comparison of the genome diversities at the intrahost level showed low diversity in the accessory genevpxin all patients. Our study demonstrates that RNA-Seq is a feasible full-genomede novosequencing method for blood plasma samples collected from HIV-2-infected individuals.IMPORTANCEAn accurate picture of viral genetic diversity is critical for the development of a globally effective HIV vaccine. However, sequencing strategies are often complicated by target enrichment prior to sequencing, introducing biases that can distort variant frequencies, which are not easily corrected for in downstream analyses. Additionally, detaileda priorisequence knowledge is needed to inform robust primer design when employing PCR amplification, a factor that is often lacking when working with tropical diseases localized in developing countries. Previous work has demonstrated that direct RNA shotgun sequencing (RNA-Seq) can be used to circumvent these issues for hepatitis C virus (HCV) and norovirus. We applied RNA-Seq to total RNA extracted from HIV-2 blood plasma samples, demonstrating the applicability of this technique to HIV-2 and allowing us to generate a dynamic picture of genetic diversity over the whole genome of HIV-2 in the context of low-bias sequencing.


2019 ◽  
Vol 13 (5) ◽  
pp. e0007330 ◽  
Author(s):  
Angèle H. M. Bénard ◽  
Etienne Guenou ◽  
Maria Fookes ◽  
Jerome Ateudjieu ◽  
Watipaso Kasambara ◽  
...  

2018 ◽  
Author(s):  
David R. Greig ◽  
Ulf Schafer ◽  
Sophie Octavia ◽  
Ebony Hunter ◽  
Marie A. Chattaway ◽  
...  

AbstractEpidemiological and microbiological data on Vibrio cholerae isolated between 2004 and 2017 (n=836) and held in the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome derived species identification and serotype for a sub-set of isolates (n=152). Of the 836 isolates, 750 (89.7%) were from faecal specimens, 206 (24.6%) belonged to serogroup O1 and seven (0.8%) were serogroup O139, and 792 (94.7%) isolates from patients reporting recent travel abroad, most commonly to India (n=209) and Pakistan (n=104). Of the 152 isolates of V. cholerae speciated by kmer identification, 149 (98.1%) were concordant with the traditional biochemical approach. Traditional serotyping results were 100% concordant with the whole genome sequencing (WGS) analysis for identification of serogroups O1 and O139 and Classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type (ST) 69, and in V. cholerae O1 Classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from UK travellers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from UK travellers will contribute to global surveillance programs, and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travellers and mitigate the impact of imported infections and the associated risks to public health.


2020 ◽  
Author(s):  
Inès Levade ◽  
Ashraful I. Khan ◽  
Fahima Chowdhury ◽  
Stephen B. Calderwood ◽  
Edward T. Ryan ◽  
...  

ABSTRACTVibrio cholerae can cause a range of symptoms in infected patients, ranging from severe diarrhea to asymptomatic infection. Previous studies using whole genome sequencing (WGS) of multiple bacterial isolates per patient have shown that Vibrio cholerae can evolve a modest amount of genetic diversity during symptomatic infection. Little is known about V. cholerae genetic diversity within asymptomatic infected patients. To achieve increased resolution in the detection of Vibrio cholerae diversity within individual infections, we applied culture-based population genomics and metagenomics to a cohort of symptomatic and asymptomatic cholera patients. While the metagenomic approach allowed us to detect more mutations in symptomatic patients compared to the culture-based approach, WGS of isolates was still necessary to detect V. cholerae diversity in asymptomatic carriers, likely due to their low Vibrio cholerae load. We found that symptomatic and asymptomatic patients contain similar levels of within-patient diversity, and discovered V. cholerae hypermutators in some patients. While hypermutators appeared to generate mostly selectively neutral mutations, non-mutators showed signs of convergent mutation across multiple patients, suggesting V. cholerae adaptation within hosts. Our results highlight the power of metagenomics combined with isolate sequencing to characterize within-patient diversity in acute V. cholerae infection and asymptomatic infection, while providing evidence for hypermutator phenotypes within cholera patients.IMPORTANCEPathogen evolution within patients can impact phenotypes such as drug resistance and virulence, potentially affecting clinical outcomes. V. cholerae infection can result in life-threatening diarrheal disease, or asymptomatic infection. Here we describe whole-genome sequencing of V. cholerae isolates and culture-free metagenomic sequencing from stool of symptomatic cholera patients and asymptomatic carriers. Despite the acuteness of cholera infections, we found evidence for adaptive mutations in the V. cholerae genome that occur independently and repeatedly within multiple symptomatic patients. We also identified V. cholerae hypermutator phenotypes within 6 out of 14 patients, which appear to generate mainly neutral or deleterious mutations. Our work sets the stage for future studies of the role of hypermutators and within-patient evolution in explaining the variation from asymptomatic carriage to symptomatic cholera.


2021 ◽  
Author(s):  
Yu-Sheng Chen ◽  
Shuaiyao Lu ◽  
Bing Zhang ◽  
Tingfu Du ◽  
Wen-Jie Li ◽  
...  

SARS-CoV-2, as the causation of severe epidemic of COVID-19, is one kind of positive single-stranded RNA virus with high transmissibility. However, whether or not SARS-CoV-2 can integrate into host genome needs thorough investigation. Here, we performed both RNA sequencing (RNA-seq) and whole genome sequencing on SARS-CoV-2 infected human and monkey cells, and investigated the presence of host-virus chimeric events. Through RNA-seq, we did detect the chimeric host-virus reads in the infected cells. But further analysis using mixed libraries of infected cells and uninfected zebrafish embryos demonstrated that these reads are falsely generated during library construction. In support, whole genome sequencing also didn't identify the existence of chimeric reads in their corresponding regions. Therefore, the evidence for SARS-CoV-2's integration into host genome is lacking.


2018 ◽  
Vol 56 (11) ◽  
Author(s):  
David R. Greig ◽  
Ulf Schaefer ◽  
Sophie Octavia ◽  
Ebony Hunter ◽  
Marie A. Chattaway ◽  
...  

ABSTRACT Epidemiological and microbiological data on Vibrio cholerae strains isolated between April 2004 and March 2018 (n = 836) and held at the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome-derived species identification and serotype for a subset of isolates (n = 152). Of the 836 isolates, 750 (89.7%) were from a fecal specimen, 206 (24.6%) belonged to serogroup O1, and 7 (0.8%) were serogroup O139; 792 (94.7%) isolates were from patients reporting recent travel abroad, most commonly to India (n = 209) and Pakistan (n = 104). Of the 152 V. cholerae isolates identified by use of kmer, 149 (98.1%) were concordant with those identified using the traditional biochemical approach. Traditional serotyping results were 100% concordant with those of the whole-genome sequencing (WGS) analysis for the identification of serogroups O1 and O139 and classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type 69 (ST69) and in V. cholerae O1 classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from U.K. travelers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from U.K. travelers will contribute to global surveillance programs and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travelers and mitigate the impact of imported infections and the associated risks to public health.


2018 ◽  
Vol 91 ◽  
pp. 124-128 ◽  
Author(s):  
Mildred Rodriguez-Cordero ◽  
Noelani Cigüela ◽  
Ligia Llovera ◽  
Teresa González ◽  
Alexander Briceño ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document