scholarly journals The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives

2016 ◽  
Vol 41 ◽  
pp. 150-158 ◽  
Author(s):  
Yuval B Simons ◽  
Guy Sella
2016 ◽  
Author(s):  
Yuval B. Simons ◽  
Guy Sella

AbstractOver the past decade, there has been both great interest and confusion about whether recent demographic events—notably the Out-of-Africa-bottleneck and recent population growth—have led to differences in mutation load among human populations. The confusion can be traced to the use of different summary statistics to measure load, which lead to apparently conflicting results. We argue, however, that when statistics more directly related to load are used, the results of different studies and data sets consistently reveal little or no difference in the load of non-synonymous mutations among human populations. Theory helps to understand why no such differences are seen, as well as to predict in what settings they are to be expected. In particular, as predicted by modeling, there is evidence for changes in the load of recessive loss of function mutations in founder and inbred human populations. Also as predicted, eastern subspecies of gorilla, Neanderthals and Denisovans, who are thought to have undergone reductions in population sizes that exceed the human Out-of-Africa bottleneck in duration and severity, show evidence for increased load of non-synonymous mutations (relative to western subspecies of gorillas and modern humans, respectively). A coherent picture is thus starting to emerge about the effects of demographic history on the mutation load in populations of humans and close evolutionary relatives.


2014 ◽  
Vol 46 (3) ◽  
pp. 220-224 ◽  
Author(s):  
Yuval B Simons ◽  
Michael C Turchin ◽  
Jonathan K Pritchard ◽  
Guy Sella

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sankar Subramanian

Abstract Objective Domestication of wild animals results in a reduction in the effective population size, and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to the accumulation of deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 364 animals belonging to 18 cattle breeds of the world. Results Our analysis revealed more than a fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the breed age and the proportion of deleterious amino acid-changing polymorphisms. This suggests a proportionally higher deleterious SNPs in young breeds compared to older breeds. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1993-1999 ◽  
Author(s):  
Peter D Keightley

Much population genetics and evolution theory depends on knowledge of genomic mutation rates and distributions of mutation effects for fitness, but most information comes from a few mutation accumulation experiments in Drosophila in which replicated chromosomes are sheltered from natural selection by a balancer chromosome. I show here that data from these experiments imply the existence of a large class of minor viability mutations with approximately equivalent effects. However, analysis of the distribution of viabilities of chromosomes exposed to EMS mutagenesis reveals a qualitatively different distribution of effects lacking such a minor effects class. A possible explanation for this difference is that transposable element insertions, a common class of spontaneous mutation event in Drosophila, frequently generate minor viability effects. This explanation would imply that current estimates of deleterious mutation rates are not generally applicable in evolutionary models, as transposition rates vary widely. Alternatively, much of the apparent decline in viability under spontaneous mutation accumulation could have been nonmutational, perhaps due to selective improvement of balancer chromosomes. This explanation accords well with the data and implies a spontaneous mutation rate for viability two orders of magnitude lower than previously assumed, with most mutation load attributable to major effects.


1999 ◽  
Vol 74 (1) ◽  
pp. 31-42 ◽  
Author(s):  
J. RONFORT

Single-locus equilibrium frequencies of a partially recessive deleterious mutation under the mutation–selection balance model are derived for partially selfing autotetraploid populations. Assuming multiplicative fitness interactions among loci, approximate solutions for the mean fitness and inbreeding depression values are also derived for the multiple locus case and compared with expectations for the diploid model. As in diploids, purging of deleterious mutations through consanguineous matings occurs in autotetraploid populations, i.e. the equilibrium mutation load is a decreasing function of the selfing rate. However, the variation of inbreeding depression with the selfing rate depends strongly on the dominance coefficients associated with the three heterozygous genotypes. Inbreeding depression can either increase or decrease with the selfing rate, and does not always vary monotonically. Expected issues for the evolution of the selfing rate consequently differ depending on the dominance coefficients. In some cases, expectations for the evolution of the selfing rate resemble expectations in diploids; but particular sets of dominance coefficients can be found that lead to either complete selfing or intermediate selfing rates as unique evolutionary stable state.


PLoS Genetics ◽  
2016 ◽  
Vol 12 (10) ◽  
pp. e1006385 ◽  
Author(s):  
Natalie Saini ◽  
Steven A. Roberts ◽  
Leszek J. Klimczak ◽  
Kin Chan ◽  
Sara A. Grimm ◽  
...  

PLoS Genetics ◽  
2020 ◽  
Vol 16 (8) ◽  
pp. e1008348 ◽  
Author(s):  
Quentin Rougemont ◽  
Jean-Sébastien Moore ◽  
Thibault Leroy ◽  
Eric Normandeau ◽  
Eric B. Rondeau ◽  
...  

2006 ◽  
Vol 21 (1) ◽  
pp. 9-35 ◽  
Author(s):  
ZHONGWEI ZHAO

Thanks to the progress that has been made in the study of population history, it has been gradually accepted that fertility in historical China was only moderate in comparison with the recorded high fertility. However, scholars still disagree on whether the Chinese could have intentionally controlled their family size. This article first summarizes recent findings about fertility patterns in historical China. Then the author provides further evidence of people limiting their family size in the past, before discussing the impact of traditional beliefs on people's fertility behaviour and summarizing the antinatalist ideas and suggestions put forwarded by Chinese officials and intellectuals over China's long history. This evidence is then used to comment on a number of suggestions that have been made about China's traditional reproductive behaviour and culture. The article challenges the views that people's reproductive strategies aimed in the past to maximize the number of surviving offspring and that the demand for children (or sons) was always high in historical China.


Sign in / Sign up

Export Citation Format

Share Document