Genome-wide identification of Polycomb target genes in human embryonic stem cells

Gene ◽  
2013 ◽  
Vol 518 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Xue Xiao ◽  
Zhe Li ◽  
Hongbo Liu ◽  
Jianzhong Su ◽  
Fang Wang ◽  
...  
PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126590 ◽  
Author(s):  
Valentina Poletti ◽  
Alessia Delli Carri ◽  
Guidantonio Malagoli Tagliazucchi ◽  
Andrea Faedo ◽  
Luca Petiti ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9052
Author(s):  
Indrek Teino ◽  
Antti Matvere ◽  
Martin Pook ◽  
Inge Varik ◽  
Laura Pajusaar ◽  
...  

Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types.


2021 ◽  
Author(s):  
Ho-Chang Jeong ◽  
Young-Hyun Go ◽  
Joong-Gon Shin ◽  
Yun-Jeong Kim ◽  
Min-Guk Cho ◽  
...  

AbstractAlthough human embryonic stem cells (hESCs) are equipped with highly effective machinery for the maintenance of genome integrity, the frequency of genetic aberrations during long-term in vitro hESC culture has been a serious issue that raises concerns over their safety in future clinical applications. By passaging hESCs over a broad range of timepoints, we found that mitotic aberrations, such as the delay of mitosis, multipolar centrosomes, and chromosome mis-segregation, were increased in the late-passaged hESCs (LP-hESCs) in parallel with polyploidy compared to early-passaged hESCs (EP-hESCs). Through high-resolution genome-wide approaches and by following transcriptome analysis, we found that LP-hESCs with a minimal amplicon in chromosome 20q11.21 highly expressed TPX2 (targeting protein for Xklp2), a key protein for governing spindle assembly and cancer malignancy. Consistent with these findings, the inducible expression of TPX2 in EP-hESCs reproduced aberrant mitotic events, such as the delay of mitotic progression, spindle stability, misaligned chromosomes, and polyploidy. This data suggests that the amplification and increased transcription of the TPX2 gene at 20q11.21 could contribute to an increase in aberrant mitosis due to altered spindle dynamics.


Genomics ◽  
2012 ◽  
Vol 99 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Jianzhong Su ◽  
Xiujuan Shao ◽  
Hongbo Liu ◽  
Shengqiang Liu ◽  
Qiong Wu ◽  
...  

Stem Cells ◽  
2006 ◽  
Vol 24 (8) ◽  
pp. 1956-1967 ◽  
Author(s):  
Abdelaziz Beqqali ◽  
Jantine Kloots ◽  
Dorien Ward-van Oostwaard ◽  
Christine Mummery ◽  
Robert Passier

Science ◽  
2014 ◽  
Vol 346 (6216) ◽  
pp. 1529-1533 ◽  
Author(s):  
Kosuke Funato ◽  
Tamara Major ◽  
Peter W. Lewis ◽  
C. David Allis ◽  
Viviane Tabar

Over 70% of diffuse intrinsic pediatric gliomas, an aggressive brainstem tumor, harbor heterozygous mutations that create a K27M amino acid substitution (methionine replaces lysine 27) in the tail of histone H3.3. The role of the H3.3K27M mutation in tumorigenesis is not fully understood. Here, we use a human embryonic stem cell system to model this tumor. We show that H3.3K27M expression synergizes with p53 loss and PDGFRA activation in neural progenitor cells derived from human embryonic stem cells, resulting in neoplastic transformation. Genome-wide analyses indicate a resetting of the transformed precursors to a developmentally more primitive stem cell state, with evidence of major modifications of histone marks at several master regulator genes. Drug screening assays identified a compound targeting the protein menin as an inhibitor of tumor cell growth in vitro and in mice.


Sign in / Sign up

Export Citation Format

Share Document