Cationic Cell Penetrating Peptides as Potential Inhibitors of HIV-1 Infection

2012 ◽  
Vol 9 (1) ◽  
pp. S94
Author(s):  
Shawn Keogan ◽  
Shendra Passic ◽  
Brian Wigdahl ◽  
Fred Krebs
2019 ◽  
Vol 41 (11) ◽  
pp. 1283-1298 ◽  
Author(s):  
Saba Davoodi ◽  
Azam Bolhassani ◽  
Seyed Mehdi Sadat ◽  
Shiva Irani

2007 ◽  
Vol 35 (4) ◽  
pp. 767-769 ◽  
Author(s):  
J. Howl ◽  
I.D. Nicholl ◽  
S. Jones

Studies of CPPs (cell-penetrating peptides), sequences that are also commonly designated as protein transduction domains, now extend to a second decade of exciting and far-reaching discoveries. CPPs are proven vehicles for the intracellular delivery of macromolecules that include oligonucleotides, peptides and proteins, low-molecular-mass drugs, nanoparticles and liposomes. The biochemical properties of different classes of CPP, including various sequences derived from the HIV-1 Tat (transactivator of transcription) [e.g. Tat-(48–60), GRKKRRQRRRPPQ], and the homeodomain of the Drosophila homeoprotein Antennapaedia (residues 43–58, commonly named penetratin, RQIKIWFQNRRMKWKK), also provide novel insights into the fundamental mechanisms of translocation across biological membranes. Thus the efficacy of CPP-mediated cargo delivery continues to provide valuable tools for biomedical research and, as witnessed in 2007, candidate and emerging therapeutics. Thus it is anticipated that the further refinement of CPP technologies will provide drug-delivery vectors, cellular imaging tools, nanoparticulate devices and molecular therapeutics that will have a positive impact on the healthcare arena. The intention of this article is to provide both a succinct overview of current developments and applications of CPP technologies, and to illustrate key developments that the concerted efforts of the many researchers contributing to the Biochemical Society's Focused Meeting in Telford predict for the future. The accompanying papers in this issue of Biochemical Society Transactions provide additional details and appropriate references. Hopefully, the important and eagerly anticipated biomedical and clinical developments within the CPP field will occur sooner rather than later.


IUBMB Life ◽  
2019 ◽  
Vol 71 (10) ◽  
pp. 1619-1633 ◽  
Author(s):  
Bahareh Rostami ◽  
Shiva Irani ◽  
Azam Bolhassani ◽  
Reza Ahangari Cohan

2003 ◽  
Vol 279 (10) ◽  
pp. 9208-9214 ◽  
Author(s):  
Armelle Roisin ◽  
Jean-Philippe Robin ◽  
Nathalie Dereuddre-Bosquet ◽  
Anne-Laure Vitte ◽  
Dominique Dormont ◽  
...  

2017 ◽  
Vol 188 ◽  
pp. 38-45 ◽  
Author(s):  
Somayeh Kadkhodayan ◽  
Behnaz Sadat Jafarzade ◽  
Seyed Mehdi Sadat ◽  
Fateme Motevalli ◽  
Elnaz Agi ◽  
...  

2019 ◽  
Vol 16 (4) ◽  
pp. 280-287 ◽  
Author(s):  
Bahareh Rostami ◽  
Shiva Irani ◽  
Azam Bolhassani ◽  
Reza Ahangari Cohan

Background: HIV-1 Nef protein is a possible attractive target in the development of therapeutic HIV vaccines including protein-based vaccines. The most important disadvantage of protein-based vaccines is their low immunogenicity which can be improved by heat shock proteins (Hsps) as an immunomodulator, and cell-penetrating peptides (CPPs) as a carrier. Methods: In this study, the HIV-1 Nef and Hsp20-Nef proteins were generated in E.coli expression system for delivery into the HEK-293T mammalian cell line using a novel cell-penetrating peptide, M918, in a non-covalent fashion. The size, zeta potential and morphology of the peptide/protein complexes were studied by scanning electron microscopy (SEM) and Zeta sizer. The efficiency of Nef and Hsp20-Nef transfection using M918 was evaluated by western blotting in HEK-293T cell line. Results: The SEM data confirmed the formation of discrete nanoparticles with a diameter of approximately 200-250 nm and 50-80 nm for M918/Nef and M918/Hsp20-Nef, respectively. The dominant band of ~ 27 kDa and ~ 47 kDa was detected in the transfected cells with the Nef/ M918 and Hsp20-Nef/ M918 nanoparticles at a molar ratio of 1:20 using anti-HIV-1 Nef monoclonal antibody. These bands were not detected in the un-transfected and transfected cells with Nef or Hsp20- Nef protein alone indicating that M918 could increase the penetration of Nef and Hsp20-Nef proteins into the cells. Conclusion: These data suggest that M918 CPP can be used to enter HIV-1 Nef and Hsp20-Nef proteins inside mammalian cells efficiently as a promising approach in HIV-1 vaccine development.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Shawn Keogan ◽  
Shendra Passic ◽  
Fred C. Krebs

Cell-penetrating peptides (CPP), which are short peptides that are capable of crossing the plasma membrane of a living cell, are under development as delivery vehicles for therapeutic agents that cannot themselves enter the cell. One well-studied CPP is the 10-amino acid peptide derived from the human immunodeficiency virus type 1 (HIV-1) Tat protein. In experiments to test the hypothesis that multiple cationic amino acids within Tat peptide confer antiviral activity against HIV-1, introduction of Tat peptide resulted in concentration-dependent inhibition of HIV-1 IIIB infection. Using Tat peptide variants containing arginine substitutions for two nonionic residues and two lysine residues, HIV-1 inhibition experiments demonstrated a direct relationship between cationic charge and antiviral potency. These studies of Tat peptide as an antiviral agent raise new questions about the role of Tat in HIV-1 replication and provide a starting point for the development of CPPs as novel HIV-1 inhibitors.


2020 ◽  
Vol 17 (6) ◽  
pp. 408-428 ◽  
Author(s):  
Fatemeh Namazi ◽  
Azam Bolhassani ◽  
Seyed Mehdi Sadat ◽  
Shiva Irani

Background: An effective vaccine against human immunodeficiency virus 1 (HIV-1) is an important global health priority. Despite many efforts in the development of the HIV-1 vaccine, no effective vaccine has been approved yet. Recently, polyepitope vaccines including several immunogenic and conserved epitopes of HIV-1 proteins have received special attention. Methods: In this study, HIV-1 Nef, Tat, Gp160 and P24 proteins were considered for selection of immunodominant and conserved epitopes due to their critical roles in the viral life cycle and pathogenesis. At first, the Nef60-84-Nef126-144-Tat29-49-Gp16030-53-Gp160308-323-P248-151 DNA construct was designed using in silico studies. Then, the DNA construct was subcloned in pEGFP-N1 and pET- 24a (+) expression vectors and the rNef-Tat-Gp160-P24 polyepitope peptide was generated in E.coli expression system for in vitro delivery using novel cell-penetrating peptides (CPPs), LDP-NLS and CyLoP-1, in a non-covalent manner. Also, the HR9 and MPG CPPs were used to transfer the DNA construct. Results: Our results showed that the recombinant polyepitope peptide generated in Rosetta strain migrated as a clear band of ~31 kDa in SDS-PAGE. The SEM data confirmed the formation of stable nanoparticles with a size below 250 nm. MTT assay revealed that the complexes did not represent any considerable cytotoxic effect compared to untreated cells. The results of fluorescence microscopy, flow cytometry and western blotting indicated that these CPPs successfully delivered polyepitope constructs into HEK-293T cell line. Conclusion: These data suggested that these CPPs can be used as a promising approach for the development of the HIV-1 vaccine.


Sign in / Sign up

Export Citation Format

Share Document