Sulfur speciation in a tropical soil amended with lime and phosphogypsum under long-term no-tillage system

Geoderma ◽  
2022 ◽  
Vol 406 ◽  
pp. 115461
Author(s):  
Rodolfo Fagundes Costa ◽  
Ruan Francisco Firmano ◽  
Marina Colzato ◽  
Carlos Alexandre Costa Crusciol ◽  
Luís R.F. Alleoni
Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


Author(s):  
Edemar Moro ◽  
Carlos Alexandre Costa Crusciol ◽  
Adriano Stephan Nascente ◽  
Heitor Cantarella

1998 ◽  
Vol 25 (2) ◽  
pp. 59-62 ◽  
Author(s):  
W. J. Grichar

Abstract Field studies were conducted from 1987 to 1996 to evaluate the effects of long-term no-tillage, reduced-tillage, or full-tillage systems on peanut grade, yield, and stem rot (Sclerotium rolfsii) disease development. In 3 of 10 yr the full-tillage system outyielded the no-tillage system while the reduced tillage system resulted in yield increase over no-tillage systems in 2 yr. Reduced-tillage plots had a higher incidence of stem rot than full-or no-tillage in 4 of 10 yr. In 3 of 10 yr, peanut grade (% TSMK) was lower in no-tillage than full-tillage plots. The reduced tillage system has shown promise for use in Texas for peanut. However, no-tillage peanut systems have never produced yield and quality comparable to full-tillage systems.


2012 ◽  
Vol 93 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Renato Guardini ◽  
Jucinei José Comin ◽  
Djalma Eugênio Schmitt ◽  
Tales Tiecher ◽  
Marcos Antônio Bender ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 247
Author(s):  
Erdiana Damayanti ◽  
Muhajir Utomo ◽  
Ainin Niswati ◽  
Henrie Buchari

Unsustainable cultivation techniques can cause carbon loss on farm.   The cultivation technique that is often used by farmers today is intensive tillage.  Intensive tillage can increase CO2. Steps to reduce CO2 gas emissions, while increasing carbon stored in the soil by implementing agricultural cultivation with conservation tillage system (Olah Tanah Konservasi). The conservation tillage system is able to reduce global warming through absorption of C in the soil, and reduce CO2 emissions. In addition, fertilization can also affect CO2 emissions. CO2 emissions in the soil come from soil respiration. The purpose of this study was to determine the effect of long-term tillage systems on soil respiration, determine the effect of long-term N fertilization on soil respiration, and determine the effect of interactions between tillage systems and long-term N fertilization on soil respiration. The study was arranged in a randomized block design (RBD) consisting of two factors, namely the tillage system and nitrogen fertilization factors. The first factor is the treatment of tillage system (T) namely T0 = no tillage, and T1 = intensive tillage, while the second factor is without nitrogen fertilizer (N0) and high nitrogen fertilizer (N1). The data obtained will be tested for homogeneity by Bartlett Test and additives tested by Tukey Test. Furthermore, the data were analyzed by analysis of variance and continued with a BNJ test of 5% level. Observation of soil respiration was done 4 times, namely -1, 1, 2, 3 days after tillage. The results showed that soil respiration one day before to three days after the soil was treated in intensive tillage (OTI) was the same as the no tillage system (TOT), soil respiration -1 days after tillage to 3 days after tillage on nitrogen fertilization (100 N kg ha-1 ) given in the previous planting season the same as without fertilization (0 kg N ha-1), and there is no interaction between the tillage system and nitrogen fertilization on soil respiration.


Soil Research ◽  
2021 ◽  
Author(s):  
Gabriel Barth ◽  
Lenir Fátima Gotz ◽  
Nerilde Favaretto ◽  
Volnei Pauletti

2013 ◽  
Vol 34 (4) ◽  
Author(s):  
Cimélio Bayer ◽  
Juliana Gomes ◽  
Frederico Costa Beber Vieira ◽  
Josiléia Accordi Zanatta ◽  
Marisa De Cássia Piccolo ◽  
...  

Author(s):  
Filipe Selau Carlos ◽  
Naihana Schaffer ◽  
Elio Marcolin ◽  
Rodrigo Schmitt Fernandes ◽  
Roberta Mariot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document