Long‐term no‐tillage system can increase enzymatic activity and maintain bacterial richness in paddy field

Author(s):  
Filipe Selau Carlos ◽  
Naihana Schaffer ◽  
Elio Marcolin ◽  
Rodrigo Schmitt Fernandes ◽  
Roberta Mariot ◽  
...  
Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


1998 ◽  
Vol 25 (2) ◽  
pp. 59-62 ◽  
Author(s):  
W. J. Grichar

Abstract Field studies were conducted from 1987 to 1996 to evaluate the effects of long-term no-tillage, reduced-tillage, or full-tillage systems on peanut grade, yield, and stem rot (Sclerotium rolfsii) disease development. In 3 of 10 yr the full-tillage system outyielded the no-tillage system while the reduced tillage system resulted in yield increase over no-tillage systems in 2 yr. Reduced-tillage plots had a higher incidence of stem rot than full-or no-tillage in 4 of 10 yr. In 3 of 10 yr, peanut grade (% TSMK) was lower in no-tillage than full-tillage plots. The reduced tillage system has shown promise for use in Texas for peanut. However, no-tillage peanut systems have never produced yield and quality comparable to full-tillage systems.


2021 ◽  
Vol 5 ◽  
Author(s):  
Tindall Ouverson ◽  
Jed Eberly ◽  
Tim Seipel ◽  
Fabian D. Menalled ◽  
Suzanne L. Ishaq

Industrialized agriculture results in simplified landscapes where many of the regulatory ecosystem functions driven by soil biological and physicochemical characteristics have been hampered or replaced with intensive, synthetic inputs. To restore long-term agricultural sustainability and soil health, soil should function as both a resource and a complex ecosystem. In this study, we examined how cropping systems impact soil bacterial community diversity and composition, important indicators of soil ecosystem health. Soils from a representative cropping system in the semi-arid Northern Great Plains were collected in June and August of 2017 from the final phase of a 5-year crop rotation managed either with chemical inputs and no-tillage, as a USDA-certified organic tillage system, or as a USDA-certified organic sheep grazing system with reduced tillage intensity. DNA was extracted and sequenced for bacteria community analysis via 16S rRNA gene sequencing. Bacterial richness and diversity decreased in all farming systems from June to August and was lowest in the chemical no-tillage system, while evenness increased over the sampling period. Crop species identity did not affect bacterial richness, diversity, or evenness. Conventional no-till, organic tilled, and organic grazed management systems resulted in dissimilar microbial communities. Overall, cropping systems and seasonal changes had a greater effect on microbial community structure and diversity than crop identity. Future research should assess how the rhizobiome responds to the specific phases of a crop rotation, as differences in bulk soil microbial communities by crop identity were not detectable.


2012 ◽  
Vol 93 (2) ◽  
pp. 215-225 ◽  
Author(s):  
Renato Guardini ◽  
Jucinei José Comin ◽  
Djalma Eugênio Schmitt ◽  
Tales Tiecher ◽  
Marcos Antônio Bender ◽  
...  

2020 ◽  
Vol 8 (2) ◽  
pp. 247
Author(s):  
Erdiana Damayanti ◽  
Muhajir Utomo ◽  
Ainin Niswati ◽  
Henrie Buchari

Unsustainable cultivation techniques can cause carbon loss on farm.   The cultivation technique that is often used by farmers today is intensive tillage.  Intensive tillage can increase CO2. Steps to reduce CO2 gas emissions, while increasing carbon stored in the soil by implementing agricultural cultivation with conservation tillage system (Olah Tanah Konservasi). The conservation tillage system is able to reduce global warming through absorption of C in the soil, and reduce CO2 emissions. In addition, fertilization can also affect CO2 emissions. CO2 emissions in the soil come from soil respiration. The purpose of this study was to determine the effect of long-term tillage systems on soil respiration, determine the effect of long-term N fertilization on soil respiration, and determine the effect of interactions between tillage systems and long-term N fertilization on soil respiration. The study was arranged in a randomized block design (RBD) consisting of two factors, namely the tillage system and nitrogen fertilization factors. The first factor is the treatment of tillage system (T) namely T0 = no tillage, and T1 = intensive tillage, while the second factor is without nitrogen fertilizer (N0) and high nitrogen fertilizer (N1). The data obtained will be tested for homogeneity by Bartlett Test and additives tested by Tukey Test. Furthermore, the data were analyzed by analysis of variance and continued with a BNJ test of 5% level. Observation of soil respiration was done 4 times, namely -1, 1, 2, 3 days after tillage. The results showed that soil respiration one day before to three days after the soil was treated in intensive tillage (OTI) was the same as the no tillage system (TOT), soil respiration -1 days after tillage to 3 days after tillage on nitrogen fertilization (100 N kg ha-1 ) given in the previous planting season the same as without fertilization (0 kg N ha-1), and there is no interaction between the tillage system and nitrogen fertilization on soil respiration.


Soil Research ◽  
2021 ◽  
Author(s):  
Gabriel Barth ◽  
Lenir Fátima Gotz ◽  
Nerilde Favaretto ◽  
Volnei Pauletti

Geoderma ◽  
2022 ◽  
Vol 406 ◽  
pp. 115461
Author(s):  
Rodolfo Fagundes Costa ◽  
Ruan Francisco Firmano ◽  
Marina Colzato ◽  
Carlos Alexandre Costa Crusciol ◽  
Luís R.F. Alleoni

2013 ◽  
Vol 34 (4) ◽  
Author(s):  
Cimélio Bayer ◽  
Juliana Gomes ◽  
Frederico Costa Beber Vieira ◽  
Josiléia Accordi Zanatta ◽  
Marisa De Cássia Piccolo ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 194
Author(s):  
Venâncio Rodrigues e Silva ◽  
José Luiz Rodrigues Torres ◽  
Danyllo Denner de Almeida Costa ◽  
Bruna de Souza Silveira ◽  
Dinamar Márcia da Silva Vieira ◽  
...  

The period of implantation of the no-tillage system (NTS) is a fundamental factor to the dimension of the changes that occur to the soil's physical, chemical and biological attributes. Thus, the objective of this study was to evaluate the soil changes to the physical attributes and correlate the results to the soil organic matter in areas of different long-term soil management. The study was set as a completely randomised design, in a 4 × 4 factorial scheme, with four management systems [5 years NTS (NTS5); 17 years NTS (NTS17); conventional tillage system for 20 years (CTS20); native area (NA)], and four soil depths (0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.4 m), with five repetitions. Soil mechanical resistance to root penetration (RP), bulk density (SD), volumetric moisture (VM), macro (Ma), microporosity (Mi) and total porosity (TP), and the aggregation parameters were evaluated. The CTS20, NTS5 and NTS17 presented superior SD in the most superficial soil layers, which was not yet causing resistance to root development. The SD was the only physical attribute that correlated significantly with all the other soil attributes evaluated, indicating the importance of such attribute to evaluate soil quality to crops. The soil physical attributes found in the Cerrado native area followed the sequence of similarities: no-tillage system with 17 years (most similar), with five years and the conventional tillage system (less similar). The changes caused by the anthropic activity in the soil's physical attributes are more pronounced and perceptible in soil depths up to 0.2 m.


Sign in / Sign up

Export Citation Format

Share Document