Long-Term Effects of Three Tillage Systems on Peanut Grade, Yield, and Stem Rot Development1

1998 ◽  
Vol 25 (2) ◽  
pp. 59-62 ◽  
Author(s):  
W. J. Grichar

Abstract Field studies were conducted from 1987 to 1996 to evaluate the effects of long-term no-tillage, reduced-tillage, or full-tillage systems on peanut grade, yield, and stem rot (Sclerotium rolfsii) disease development. In 3 of 10 yr the full-tillage system outyielded the no-tillage system while the reduced tillage system resulted in yield increase over no-tillage systems in 2 yr. Reduced-tillage plots had a higher incidence of stem rot than full-or no-tillage in 4 of 10 yr. In 3 of 10 yr, peanut grade (% TSMK) was lower in no-tillage than full-tillage plots. The reduced tillage system has shown promise for use in Texas for peanut. However, no-tillage peanut systems have never produced yield and quality comparable to full-tillage systems.

2011 ◽  
Vol 57 (No. 4) ◽  
pp. 186-192 ◽  
Author(s):  
Ž. Videnović ◽  
M. Simić ◽  
J. Srdić ◽  
Z. Dumanović

The effects of three tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT), and three levels of fertilization (0, 258 and 516 kg/ha NPK (58:18:24)), on the maize yield during ten years (1999–2008) were analyzed on the chernozem soil type in Zemun Polje, Serbia. Statistical analyses showed significant effects of all three factors i.e., year, soil tillage and amount of fertilizers, and their interactions on the maize yield. The ten-year averages showed that the highest yields were observed with CT (10.61 t/ha), while the averages with RT and NT were lower (8.99 t/ha and 6.85 t/ha, respectively). The results of the influence of the amount of the applied fertilizers on maize yield showed that the lowest yield was in the zero level of fertilization 7.71 t/ha, while the yield was raised when the 258 kg/ha and 516 kg/ha NPK were applied (9.18 t/ha and 9.56 t/ha, respectively). Analyzing the influence of the soil tillage systems on maize production with respect to the amounts of applied fertilizers, this research revealed the benefits of CT under the presented agroecological conditions, irrespective of the level of applied fertilizer.


2020 ◽  
Author(s):  
Ilka Schmoock ◽  
Deborah Linsler ◽  
Mignon Sandor ◽  
Rainer Georg Joergensen ◽  
Martin Potthoff

<p>Over the last decades, reduced tillage became more and more important as a suitable soil management practice. Moreover, reduced tillage is expected to promote a healthy and active soil life as a feature of sustainable agricultural. The determination of soil microbial biomass and microbial indices are suitable indicators for estimating soil quality. This study follows a regional approach and focusses at four different countries with varying environmental conditions at long-term experimental field-sites (LTE´s) across Europe. Soil microbial biomass carbon (SMB-C), the metabolic quotient (<em>q</em>CO<sub>2</sub>) and the ratio of SMB-C to soil organic carbon (SOC) were measured as microbial properties.</p><p>Our contribution to the ongoing discussion of the effectiveness of non-conventional tillage systems is (i) the comparison between conventional ploughing (CT) and minimum tillage (MT), (ii) the comparison of inversion vs. not inversion tillage at the same working depth, (iii) the comparison of ploughing vs. no-tillage (NT), (iv) the comparison between reduced tillage systems with each other (MT vs. NT).</p><p>We found a significant difference of SMB-C for CT and MT between 0 and 10 cm in Germany and Sweden, but no difference between tillage treatments for the sampled soil profile (0-30 cm). We highlight that tillage changed the vertical distribution of SMB-C, showing similar values among soil depths under CT and a depth gradient with decreasing values for MT.</p><p>The comparison of inversion vs. not inversion tillage at the same working depth in Romania showed no differences between CT and MT at all. This suggests that humus-rich soils seem to be more resistant to tillage-related disturbances. The working depth might have a greater impact for both, inversion and non-inversion tillage than the type of the tillage system itself.</p><p>For the comparison of CT and NT, we used the field-sites in Spain and Sweden. In Spain, NT was clearly of advantage for microbial biomass and activity, compared to CT. This was true for the whole sampled soil profile (0-30 cm) whereas in Sweden differences could only be detected between SMB-C levels in two soil depths. Our results indicate that the effect of tillage seems to be smaller in cold-temperate areas.</p><p>Comparing MT and NT in Sweden, we found no difference in SMB-C between these two forms of conservation tillage, neither in the first centimeters, nor in the whole sampled profile. Consequently, minimum tillage seems to be an alternative in cold and moist regions if no-tillage is not possible to apply without reducing soil quality or crop yields.</p><p>We conclude that even if minimum and no-tillage are generally beneficial for microorganisms, there is a big variance between the different forms of reduced tillage systems. Thus, statements cannot be made across different soils and machine types, but have to be made on a regional scale.</p><p> </p>


2020 ◽  
Vol 8 (2) ◽  
pp. 247
Author(s):  
Erdiana Damayanti ◽  
Muhajir Utomo ◽  
Ainin Niswati ◽  
Henrie Buchari

Unsustainable cultivation techniques can cause carbon loss on farm.   The cultivation technique that is often used by farmers today is intensive tillage.  Intensive tillage can increase CO2. Steps to reduce CO2 gas emissions, while increasing carbon stored in the soil by implementing agricultural cultivation with conservation tillage system (Olah Tanah Konservasi). The conservation tillage system is able to reduce global warming through absorption of C in the soil, and reduce CO2 emissions. In addition, fertilization can also affect CO2 emissions. CO2 emissions in the soil come from soil respiration. The purpose of this study was to determine the effect of long-term tillage systems on soil respiration, determine the effect of long-term N fertilization on soil respiration, and determine the effect of interactions between tillage systems and long-term N fertilization on soil respiration. The study was arranged in a randomized block design (RBD) consisting of two factors, namely the tillage system and nitrogen fertilization factors. The first factor is the treatment of tillage system (T) namely T0 = no tillage, and T1 = intensive tillage, while the second factor is without nitrogen fertilizer (N0) and high nitrogen fertilizer (N1). The data obtained will be tested for homogeneity by Bartlett Test and additives tested by Tukey Test. Furthermore, the data were analyzed by analysis of variance and continued with a BNJ test of 5% level. Observation of soil respiration was done 4 times, namely -1, 1, 2, 3 days after tillage. The results showed that soil respiration one day before to three days after the soil was treated in intensive tillage (OTI) was the same as the no tillage system (TOT), soil respiration -1 days after tillage to 3 days after tillage on nitrogen fertilization (100 N kg ha-1 ) given in the previous planting season the same as without fertilization (0 kg N ha-1), and there is no interaction between the tillage system and nitrogen fertilization on soil respiration.


1991 ◽  
Vol 18 (2) ◽  
pp. 144-147 ◽  
Author(s):  
W. James Grichar ◽  
Olin D. Smith

Abstract Four runner-type peanut (Arachis hypogaea L.) cultivars, moderately resistant to Pythium myriotylum pod rot and/or southern blight (Sclerotium rolfsii), and Florunner were compared under full-tillage, minimum-tillage, and no-tillage cultural systems from 1985 to 1987. Disease, yield, and grade evaluation were made to ascertain if the soilborne disease resistance would be beneficial to peanut production under minimum-tillage systems. Averaged over genotypes, yield was 500 kg/ha more with full-than no-tillage. In one of three years, Florunner yielded less than the highest yielding cultivar. Neither pod rot nor southern blight was a major deterrent to minimum-tillage production. Genotype differences in number of southern blight infection sites, over tillage systems, occurred in two years but the relative disease incidence was inconsistent among cultivars over years. More pod discoloration occurred in Florunner than in all other cultivars in two of three years. Percent sound mature kernels (SMK) + percent sound-split kernels (SS) averaged 3.6% less for the no-tillage than for the full-tillage system, and in all years the grade for Florunner was as good or better than for all other cultivars. A significant genotype x tillage system interaction was apparent for SMK + SS. TX835820 and TX835841 grades were significantly lower with no-tillage systems while other cultivars produced no significant changes in grade.


2020 ◽  
Vol 4 (2) ◽  
pp. 56-60
Author(s):  
Rana Shahzad Noor ◽  
Fiaz Hussain ◽  
Muhammad Umair

Tillage is a critical soil management option that affect many soil physical, chemical and biological properties, which in turn may alter the soil environment and consequently impact on root growth and distribution, and crop yield. This study was carried out to evaluate the long-term effects of different soil tillage systems on some soil physical properties under both irrigated and rainfed wheat productions for nine consecutive wheat seasons (2011-12 and 2019-20) at Koont research farm, PMAS-Arid Agriculture University, Rawalpindi. Four soil tillage systems were performed i.e. conventional tillage system (S1), reduced tillage system-1 (S2), reduced tillage system-2 (S3) and no tillage system (S4). The results showed that soil moisture content measured at both soil depths (0-15 and 15-30 cm) was the maximum in direct sowing (S4) and lowest in conventional soil tillage system (S1). Bulk density and porosity were changes with tillage depth. Among studied tillage systems, bulk density and penetration resistance values were the maximum and porosity was lowest in direct wheat sowing system. Soil particle size distribution was affected by operations and agricultural machinery used in soil tillage systems. The aggregate size smaller than 1 mm showed higher fragmentation (42.25%) in S3. This study showed that soil physical properties were influenced by tillage systems in wheat production under irrigation and rainfed environment. Although the climate of the study area is semi-arid and direct sowing system provide maximum moisture but reduced tillage method can be used for better soil physical properties and highest crop yield.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1276
Author(s):  
Vaida Steponavičienė ◽  
Aušra Marcinkevičienė ◽  
Lina Marija Butkevičienė ◽  
Lina Skinulienė ◽  
Vaclovas Bogužas

The composition of weed communities in agricultural crops is dependent on soil properties and the applied agronomic practices. The current study determined the effect of different tillage systems and crop residue on the soil weed community composition. The research programme encompassed 2013–2015 in a long-term field experiment located in the Experimental Station of Vytautas Magnus University in Lithuania. The soil type in the experimental field was qualified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, Amphisiltic). Weeds were categorised into communities according to soil pH, nitrogen and moisture indicators. The results of investigations were grouped using cluster analysis. Agricultural crops were dominated by different weed species depending on the soil pH and moisture. Weed species were relatively more frequent indicating nitrogen-rich and very nitrogen-rich soils. In the reduced tillage and no-tillage systems, an increase in the abundance of weed species indicating moderate acidity and low acidity, moderately wet and wet, nitrogen-rich and very nitrogen-rich soils was observed. The application of plant residues decreased the weed species abundance. In the reduced tillage and no-tillage systems, the quantitative distribution of weed was often uneven. By evaluating the association of weed communities with groups of different tillage systems with or without plant residues, their control can be optimised.


2019 ◽  
Vol 95 ◽  
pp. 103135 ◽  
Author(s):  
Eduardo Vazquez ◽  
Marta Benito ◽  
Alberto Masaguer ◽  
Rafael Espejo ◽  
Eugenio Díaz-Pinés ◽  
...  

Bragantia ◽  
2010 ◽  
Vol 69 (suppl) ◽  
pp. 9-18 ◽  
Author(s):  
Osvaldo Guedes Filho ◽  
Sidney Rosa Vieira ◽  
Marcio Koiti Chiba ◽  
Célia Regina Grego

It is known, for a long time, that crop yields are not uniform at the field. In some places, it is possible to distinguish sites with both low and high yields even within the same area. This work aimed to evaluate the spatial and temporal variability of some crop yields and to identify potential zones for site specific management in an area under no-tillage system for 23 years. Data were analyzed from a 3.42 ha long term experimental area at the Centro Experimental Central of the Instituto Agronômico, located in Campinas, Sao Paulo State, Brazil. The crop yield data evaluated included the following crops: soybean, maize, lablab and triticale, and all of them were cultivated since 1985 and sampled at a regular grid of 302 points. Data were normalized and analyzed using descriptive statistics and geostatistical tools in order to demonstrate and describe the structure of the spatial variability. All crop yields showed high variability. All of them also showed spatial dependence and were fitted to the spherical model, except for the yield of the maize in 1999 productivity which was fitted to the exponential model. The north part of the area presented repeated high values of productivity in some years. There was a positive cross correlation amongst the productivity values, especially for the maize crops.


2016 ◽  
Vol 51 (9) ◽  
pp. 1633-1642 ◽  
Author(s):  
Claudio Hideo Martins da Costa ◽  
Carlos Alexandre Costa Crusciol ◽  
Jayme Ferrari Neto ◽  
Gustavo Spadotti Amaral Castro

Abstract The objective of this work was to evaluate the long-term effects of the surface application of lime on soil fertility and on the mineral nutrition and grain yield of soybean, and of black oat and sorghum in crop succession. The experiment was carried out on a clayey Oxisol, in a randomized complete block design, with four replicates. Treatments consisted of lime the rates of 0, 1,000, 2,000, and 4,000 kg ha-1, applied in October 2002 and November 2004. Soil samples were collected at five soil layers, down to 0.60-m depth. Surface liming was effective in reducing soil acidity and increasing Ca2+ and Mg2+ contents in the subsurface. Moreover, it increased available phosphorus contents and soil organic matter in the long term (48 to 60 months after the last lime application). Surface liming improved plant nutrition, mainly for N, Ca, and Mg, and increased dry matter production and grain yield of the crops, even in years with regular distribution of rainfall. The greatest productivities of soybean, black oat, and sorghum were obtained with the respective estimated lime doses of 4,000, 2,333, and 3,281 kg ha-1, for shoot dry matter, and of 2,550, 3,555, and over 4,000 kg ha-1, for grain yield.


2010 ◽  
Vol 45 (12) ◽  
pp. 1331-1341 ◽  
Author(s):  
Homero Bergamaschi ◽  
Genei Antonio Dalmago ◽  
João Ito Bergonci ◽  
Cleusa Adriane Menegassi Bianchi Krüger ◽  
Bruna Maria Machado Heckler ◽  
...  

The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy


Sign in / Sign up

Export Citation Format

Share Document