scholarly journals Oriented associativity equations and symmetry consistent conjugate curvilinear coordinate nets

2014 ◽  
Vol 85 ◽  
pp. 46-59 ◽  
Author(s):  
Maxim V. Pavlov ◽  
Artur Sergyeyev
Author(s):  
Rafael Loureiro Tanaka ◽  
Lauro Massao Yamada da Silveira ◽  
Joa˜o Paulo Zi´lio Novaes ◽  
Eduardo Esterqui de Barros ◽  
Clo´vis de Arruda Martins

Bending stiffeners are very important ancillary equipments of umbilicals or flexible risers, since they protect the lines from overbending. Their design however is a complex task, since many load cases must be taken into account; the structure itself has a section that is variable with curvilinear coordinate. To aid the designer in this task, optimization algorithms can be used to automate the search for the best design. In this work an optimization algorithm is applied to the design of the bending stiffener. First, a bending stiffener model is created, which is capable of simulating different load case conditions and provide, as output, results of interest such as maximum curvature, deformation along the stiffener, shear forces and so on. Then, a bending stiffener design procedure is written as an optimization problem and, for that, objective function, restrictions and design variables defined. Study cases were performed, comparing a regular design with its optimized counterpart, under varying conditions.


2015 ◽  
Vol 16 (3) ◽  
pp. 1559-1575 ◽  
Author(s):  
Junsoo Kim ◽  
Kichun Jo ◽  
Wontaek Lim ◽  
Minchul Lee ◽  
Myoungho Sunwoo

1989 ◽  
Vol 111 (4) ◽  
pp. 414-419 ◽  
Author(s):  
T. Solberg ◽  
K. J. Eidsvik

A model for two-dimensional flows over a cylinder at a plane boundary is developed. The model, based upon a (k-ε) turbulence closure, is formulated in a curvilinear coordinate system based upon frictionless flow. A length scale modification in areas of adverse pressure gradient and recirculating flow appears to be more realistic than the standard (k-ε) model. The main features of the predicted flow do not depend critically upon the details of the grid or model, which means that a well defined solution is obtained. The solution appears to be reasonable and validated to the extent that the data permits.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Ann Lee ◽  
Guan H. Yeoh ◽  
Victoria Timchenko ◽  
John Reizes

A synthetic jet results from periodic oscillations of a membrane in a cavity. Jet is formed when fluid is alternately sucked into and ejected from a small cavity by the motion of membrane bounding the cavity. A novel moving mesh algorithm to simulate the formation of jet is presented. The governing equations are transformed into the curvilinear coordinate system in which the grid velocities evaluated are then fed into the computation of the flow in the cavity domain thus allowing the conservation equations of mass and momentum to be solved within the stationary computational domain. Numerical solution generated using this moving mesh approach is compared with an experimental result measuring the instantaneous velocity fields obtained by μPIV measurements in the vicinity of synthetic jet orifice 241 μm in diameter issuing into confined geometry. Comparisons between experimental and numerical results on the streamwise component of velocity profiles at the orifice exit and along the centerline of the pulsating jet in microchannel as well as the location of vortex core indicate that there is good agreement, thereby demonstrating that the moving mesh algorithm developed is valid.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Linqian Li ◽  
Bing Wei ◽  
Qian Yang ◽  
Debiao Ge

Using the numerical discrete technique with unstructured grids, conformal perfectly matched layer (PML) absorbing boundary in the discontinuous Galerkin time-domain (DGTD) can be set flexibly so as to save lots of computing resources. Based on the DGTD equations in an orthogonal curvilinear coordinate system, the processes of parameter transformation for 2-D UPML between the coordinate systems of elliptical and Cartesian are given; and the expressions of transition matrix are derived. The calculation scheme of conductivity distribution in elliptic cylinder absorbing layer is given, and the calculation coefficient of DGTD in elliptic UPML is calculated. Furthermore, the 2-D iterative formulas of DGTD and that of auxiliary equation in the elliptical cylinder UPML are derived; the conformal UPML calculation in DGTD is realized. Numerical results show that very good accuracy and computational efficiency are achieved by using the method in this paper. Compared to the rectangular computational region, both the memory and computation time of conformal UPML absorbing boundary are reduced by more than 20%.


Sign in / Sign up

Export Citation Format

Share Document