pulsating jet
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012022
Author(s):  
A S Nebuchinov

Abstract This study investigates the development of flow and mixing processes in the stationary and impulsive transverse jets with a small degree and frequency of blowing pulsation. Velocity field measurements were carried out using the TR PIV technique. The fields of statistical moments are obtained. It is shown that when a cross flow is injected, the main flow is turbulized, while the rise of the pulsating jet depends on the outflow mode. It is shown that with an increase in the frequency of pulsations of the transverse jet, it is more strongly “pressed” against the lower wall, maximum values of the intensity of pulsations of the transverse velocity component exceed by more than 1.5 times the values of pulsations of the transverse component.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012010
Author(s):  
K G Dobroselsky

Abstract Using the visualization method, the initial rise and penetration of a circular turbulent pulsed jet into a transverse air flow are studied at the ratio of jet velocities to the transverse flow r = u j /u f = 0.67–2.33. A comparative assessment of the penetration of a pulsating jet into a transverse flow for frequencies from 0 to 20 Hz is carried out. The cases of both stationary and oscillating jet flows are analyzed. The penetration of a pulsating jet into a transverse flow is shown to be more significant than for a stationary one and depends on an increase in the ratio of velocities and frequency: it increases linearly at a fixed frequency and passes through a minimum at a fixed ratio of velocities.


2019 ◽  
Vol 2019.94 (0) ◽  
pp. 505
Author(s):  
Ryoichi KOREEDA ◽  
Takenobu MICHIOKA

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Yuan-wei Lyu ◽  
Jing-zhou Zhang ◽  
Yong Shan ◽  
Xiao-ming Tan

A series of tests were performed for the pulsating jet impingement heat transfer by varying the Reynolds number (5000 ≤ Re ≤ 20,000), operation frequency (10 Hz ≤ f ≤ 25 Hz), and dimensionless nozzle-to-surface distance (1≤H/d≤8) while fixing the duty cycle (DC) = 0.5(280 measurement data in total). Specific attention was paid to examine the relationship between the pulsating jet impingement and the steady jet impingement. By using a modified Strouhal number (Sr(H/d)), the test data are analyzed according to three classifications of the enhancement factors a = Nupulsation jet/Nusteady jet (such as a ∈ (Min,0.899), a ∈ (0.95, 1.049) and a ∈ (1.1, Max)). The results show that the identification of pulsating jet impingement in related to the steady jet impingement is suitable by using the modified Strouhal number (Sr(H/d)). Within the scope of this study, the most possibilities for the heat transfer enhancement by using pulsating jet impingement are suggested as the following conditions: Re ≤ 7500 and Sr(H/d) ≥ 0.04, Re ≥ 17500, and 0.01 ≤ Sr(H/d) ≤ 0.03; 10 Hz ≤ f ≤ 20 Hz and Sr(H/d) ≥ 0.04; H/d ≥ 6 and most of current Sr(H/d). While under such conditions, 7500 ≤ Re ≤ 15,000 and Sr(H/d) ≤ 0.02; f ≥ 20 Hz and Sr(H/d) ≤ 0.04; H/d ≤ 2 and Sr(H/d) ≤ 0.02, the pulsating jet impingement makes the heat transfer weaker than the steady jet impingement more obviously.


Sign in / Sign up

Export Citation Format

Share Document