Experimental measurement of fouling resistance in the heat exchanger of a geothermal heating system

Geothermics ◽  
2006 ◽  
Vol 35 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Predrag Milanovic ◽  
Branislav Jacimovic ◽  
Srbislav Genic
2004 ◽  
Vol 36 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Predrag Milanović ◽  
Branislav Jaćimović ◽  
Srbislav Genić

1975 ◽  
Vol 97 (4) ◽  
pp. 504-508 ◽  
Author(s):  
A. P. Watkinson ◽  
O. Martinez

Scaling of copper heat exchanger tubes has been studied under conditions that promote rapid and severe scaling. Artificially hardened water of high dissolved and suspended solids is recirculated through a heated test section operated at constant steam temperature. The effects of flow velocity, tube diameter, and bulk temperature on the asymptotic fouling resistance have been determined. Results are interpreted in terms of mathematical models of the scaling process.


Author(s):  
Xiao Wang ◽  
Lin Fu ◽  
Xiling Zhao ◽  
Hua Liu

In recent years, with the continuous urban expansion, the central heating sources are commonly insufficient in the areas of Northern China. Besides, the increasing heat transfer temperature difference results in more and more exergy loss between the primary heat network and the secondary heat network. This paper introduces a new central heating system which combines the urban heat network with geothermal energy (CHSCHNGE). In this system, the absorption heat exchange unit, which is composed of an absorption heat pump and a water to water heat exchanger, is as alternative to the conventional water to water heat exchanger at the heat exchange station, and the doing work ability of the primary heat network is utilized to drive the absorption heat pump to extract the shallow geothermal energy. In this way, the heat supply ability of the system will be increased with fewer additional energy consumptions. Since the water after driving the absorption heat pump has high temperature, it can continue to heat the supply water coming from the absorption heat pump. As a result, the water of the primary heat network will be stepped cooled and the exergy loss will be reduced. In this study, the performance of the system is simulated based on the mathematical models of the heat source, the absorption heat exchange unit, the ground heat exchanger and the room. The thermodynamic analyses are performed for three systems and the energy efficiency and exergy efficiency are compared. The results show that (a) the COP of the absorption heat exchange unit is 1.25 and the heating capacity of the system increases by 25%, which can effectively reduce the requirements of central heating sources; (b) the PER of the system increases 14.4% more than that of the conventional co-generation central heating system and 54.1% more than that of the ground source heat pump system; (c) the exergy efficiency of the CHSCHNGE is 17.6% higher than that of the conventional co-generation central heating system and 45.6% higher than that of the ground source heat pump system.


2021 ◽  
Vol 185 ◽  
pp. 116365
Author(s):  
Omid Habibzadeh-Bigdarvish ◽  
Xinbao Yu ◽  
Teng Li ◽  
Gang Lei ◽  
Aritra Banerjee ◽  
...  

Author(s):  
Prajwal Sapkota ◽  
Laxman Poudel

Bio-gas has been one of the sources of renewable energy and has been used from long time. It is produced by the anaerobic digestion or decomposition of organic compounds and has different process. The digestion process is carried out by bacteria present in the waste and it is highly dependent on the bacteria which work differently on different temperatures. The rate of anaerobic digestion is highest at hemophilic temperature (55°C). Similarly, it is moderate at mesophilic temperature (35°C) and is lowest at psychrophilic (below 20°C). Thus, to attain the highest digestion rate a thermophilic heating system has beend eveloped. The heating system uses five heat exchangers to heat the influent at digester which is of 35m3 volume, to maintain temperature at 56°C. The volume of bio-gas production from this system which uses cow dung as digestingmaterial is about 28 m3 per day.


1985 ◽  
Vol 20 (3) ◽  
pp. 235-239 ◽  
Author(s):  
S.N. Rai ◽  
G.N. Tiwari ◽  
C. Bhushan

Sign in / Sign up

Export Citation Format

Share Document