Statistically reliable petrophysical properties of potential reservoir rocks for geothermal energy use and their relation to lithostratigraphy and rock composition: The NE Rhenish Massif and the Lower Rhine Embayment (Germany)

Geothermics ◽  
2015 ◽  
Vol 53 ◽  
pp. 413-428 ◽  
Author(s):  
Rachel Jorand ◽  
Christoph Clauser ◽  
Gabriele Marquart ◽  
Renate Pechnig
2013 ◽  
pp. 772-782 ◽  
Author(s):  
Barry Goldstein ◽  
Gerardo Hiriart ◽  
Jeff Tester ◽  
Luis Gutierrez-Negrin ◽  
Ruggero Bertani ◽  
...  
Keyword(s):  

1987 ◽  
Vol 133 ◽  
pp. 141-157
Author(s):  
F.G Christiansen ◽  
H Nøhr-Hansen ◽  
O Nykjær

During the 1985 field season the Cambrian Henson Gletscher Formation in central North Greenland was studied in detail with the aim of evaluating its potential as a hydrocarbon source rock. The formation contains organic rich shale and carbonate mudstone which are considered to be potential source rocks. These are sedimentologically coupled with a sequence of sandstones and coarse carbonates which might be potential reservoir rocks or migration conduits. Most of the rocks exposed on the surface are, however, thermally mature to postrnature with respect to hydrocarbon generation, leaving only few chances of finding trapped oil in the subsurface of the area studied in detail.


2021 ◽  
Author(s):  
Cornelia Steiner ◽  
Gregor Goetzl ◽  
Martin Fuchsluger ◽  
Alexander Rehbogen

<p>Neither regional development, construction projects nor infrastructure development – structural planning does not fully consider energy supply in Austria (yet). The project “Spatial Energy Planning for Heat Transition” is part of the research initiative “Green Energy Lab”, which has a project life-time from June 2018 to May 2021. It aims to provide a sound basis for the integration of heat in private and public planning processes and for the implementation of the energy infrastructure of the future together with energy providers.</p><p>Three Austrian states (Vienna, Styria and Salzburg), their capital cities and pilot-municipalities of all scales work together to provide all information necessary for the implementation of spatial heat-planning – as role model for Austria and other European countries. The GIS-based web-tool “heat-atlas” will provide this harmonized data and serve an information platform for project developers as well as for regional planning, fostering a sustainable use of all available sustainable energy resources and infrastructures to their full extent. The system of the information platform is arbitrarily scalable and is aimed to be expanded to other interested regions of Austria on demand.</p><p>One part of this “heat-atlas” is about shallow geothermal energy and covers vertical closed loop and open loop systems. The Geological Survey of Austria developed new methods to estimate capacity and energy resources as well as to show possible limitations of shallow geothermal energy use on property level. The resource calculations combine location-specific parameters such as thermal conductivity, underground temperature and groundwater availability with system-specific parameters such as mode of operation, operational hours, geometry and threshold values demanded by official regulations.</p><p>The method provides not only information about the maximum amount of energy available on the property, but also about the cover ratio of the demand. So called level-1 maps show the resources for standardized well-doublets and borehole heat exchangers independently of the property. The calculations for level-2 maps consider site-specific properties such as heating and cooling demand, operational hours and size of the property. This enables the estimation of the overall energy resources and the cover ratio of the property.</p><p>The results are shown as maps and as location specific query, which gives a concise summary of all relevant information for one location in form of an automatically generated report. More information about the project is available at http://www.waermeplanung.at/.</p>


2021 ◽  
Author(s):  
Bita Najdahmadi ◽  
Marco Pilz ◽  
Dino Bindi ◽  
Hoby Njara Tendrisoa Razafindrakoto ◽  
Adrien Oth ◽  
...  

<p>The Lower Rhine Embayment in western Germany is one of the most important areas of earthquake recurrence north of the Alps, facing a moderate level of seismic hazard in the European context but a significant level of risk due to a large number of important industrial infrastructures. In this context, the project ROBUST aims at designing a user-oriented hybrid earthquake early warning and rapid response system where regional seismic monitoring is combined with smart, on-site sensors, resulting in the implementation of decentralized early warning procedures.<br><br>One of the research areas of this project deals with finding an optimal regional seismic network arrangement. With the optimally compacted network, strong ground movements can be detected quickly and reliably. In this work simulated scenario earthquakes in the area are used with an optimization approach in order to densify the existing sparse network through the installation of additional decentralized measuring stations. Genetic algorithms are used to design efficient EEW networks, computing optimal station locations and trigger thresholds in recorded ground acceleration. By minimizing the cost function, a comparison of the best earthquake early warning system designs is performed and the potential usefulness of existing stations in the region is considered as will be presented in the meeting.</p>


Sign in / Sign up

Export Citation Format

Share Document