A CFD analysis on using a standardized blade in different mechanical draft cooling towers for geothermal power plants

Geothermics ◽  
2021 ◽  
Vol 97 ◽  
pp. 102260
Author(s):  
Marco Francesconi ◽  
Tommaso Silei ◽  
Andrea Gamannossi ◽  
Riccardo Provasi ◽  
Marco Antonelli
Author(s):  
Zhiqiang Guan ◽  
Kamel Hooman ◽  
Hal Gurgenci

2021 ◽  
Author(s):  
Andrea Borgia ◽  
Alberto Mazzoldi ◽  
Luigi Micheli ◽  
Giovanni Grieco ◽  
Massimo Calcara ◽  
...  

Production of geothermal energy for electricity at Amiata Volcano uses flash-type power plants with cooling towers that evaporate much of the geothermal fluid to the atmosphere to condense the geothermal vapour extracted. Because the flash occurs also within the geothermal reservoir, it causes a significant depressurization within it that, in turns, results in a drop of the water table inside the volcano between 200 and 300 m. The flow rates of natural springs around the volcano have also substantially decreased or ceased since the start of geothermal energy exploitation. Continuous recording of aquifer conditions shows substantial increases in salinity (>20%) and temperature (>2°C) as the water table falls below about 755–750 m asl. In addition to hydrologic impacts, there are also a large numbers of induced earthquakes, among which the ML 3.9, April 1, 2000 earthquake that generated significant damage in the old villages and rural houses. Relevant impacts on air quality occur when emissions are considered on a per-MW basis. For example, CO2+CH4 emissions at Amiata are comparable to those of gas-fired power plants (1), while the acid-rain potential is about twice that of coal-fired power plants. Also, a significant emission of primary and secondary fine particles is associated with the cooling towers. These particles contain heavy metals and are enriched in sodium, vanadium, zinc, phosphorous, sulphur, tantalium, caesium, thallium, thorium, uranium, and arsenic relative to comparable aerosols collected in Florence and Arezzo (2). Measurements have shown that mercury emitted at Amiata comprises 42% of the mercury emitted from all Italian industries, while an additional comparable amount is emitted from the other geothermal power plants of Tuscany (3). We believe that the use of air coolers in place of the evaporative cooling towers, as suggested in 2010 by the local government of Tuscany (4), could have and can now drastically reduced the environmental impact on freshwater and air. On the opposite side of the coin, air-coolers would increase the amount of reinjection, increasing the risk of induced seismicity. We conclude that the use of deep borehole heat exchangers could perhaps be the only viable solution to the current geothermal energy environmental impacts.


Alloy Digest ◽  
1993 ◽  
Vol 42 (11) ◽  

Abstract AL 29-4C is a highly corrosion resistant alloy with a relatively high strength. This combination allows the use of lighter gage tubes, and has led to its use in the brine heat exchangers of geothermal power plants. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming and joining. Filing Code: SS-554. Producer or source: Allegheny Ludlum Corporation.


1983 ◽  
Vol 15 (10) ◽  
pp. 135-147
Author(s):  
Maurice A Shapiro ◽  
Meryl H Karol ◽  
Georg Keleti ◽  
Jan L Sykora ◽  
A J Martinez

It has been shown that several pathogenic organisms may be frequently found in thermal effluents and cooling systems of coal fired power plants. One of them is pathogenic Naegleria fowleri, the causative agent of an acute fatal human disease - primary amoebic meningoencephalitis (PAM). In our study two out of eight power plants investigated, harbored pathogenic N. fowleri in heated water or cooling towers. The occurrence of this organism was related to elevated temperatures. No significant correlation was found for other biological and chemical parameters. In addition, pathogenic Acanthamoeba which causes granulomatous amoebic encephalitis (GAE) was found in the tested heated effluents from coal fired power plants. Non-pathogenic strains of N. fowleri as well as other free-living and “harmless” amoebae were also very abundant in effluents from all investigated coal fired power plants and cooling towers. It has been reported that several species of nonpathogenic amoebae were isolated from humidifiers and air conditioning systems. Serological testing of symptomatic human subjects has indicated that these organisms may be one of the causative agents of hypersensitivity pneumonitis. An experimental study performed in our laboratory involved testing of guinea pigs sensitized by injection of axenic, non-pathogenic N. gruberi. Delayed onset skin reactivity was apparent in all animals injected with the antigen. Antibodies were detected in all sensitized animals. Bronchial provocation challenge employed to investigate pulmonary hypersensitivity was also used, and yielded positive results. All the sensitized animals displayed delayed onset respiratory responses. The results of this study indicate that not only pathogenic but also non-pathogenic free-living amoebae may be important causative agents of human disease. The occurrence of these organisms in cooling systems from coal fired power plants indicates that these facilities may be an important source of infection.


2017 ◽  
Author(s):  
Renato Somma ◽  
◽  
Domenico Granieri ◽  
Claudia Troise ◽  
Carlo Terranova ◽  
...  

2015 ◽  
Vol 7 (11) ◽  
pp. 15262-15283 ◽  
Author(s):  
Lorenzo Bruscoli ◽  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Duccio Tempesti

Sign in / Sign up

Export Citation Format

Share Document