freshwater aquifers
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Andrea Borgia ◽  
Alberto Mazzoldi ◽  
Luigi Micheli ◽  
Giovanni Grieco ◽  
Massimo Calcara ◽  
...  

Production of geothermal energy for electricity at Amiata Volcano uses flash-type power plants with cooling towers that evaporate much of the geothermal fluid to the atmosphere to condense the geothermal vapour extracted. Because the flash occurs also within the geothermal reservoir, it causes a significant depressurization within it that, in turns, results in a drop of the water table inside the volcano between 200 and 300 m. The flow rates of natural springs around the volcano have also substantially decreased or ceased since the start of geothermal energy exploitation. Continuous recording of aquifer conditions shows substantial increases in salinity (>20%) and temperature (>2°C) as the water table falls below about 755–750 m asl. In addition to hydrologic impacts, there are also a large numbers of induced earthquakes, among which the ML 3.9, April 1, 2000 earthquake that generated significant damage in the old villages and rural houses. Relevant impacts on air quality occur when emissions are considered on a per-MW basis. For example, CO2+CH4 emissions at Amiata are comparable to those of gas-fired power plants (1), while the acid-rain potential is about twice that of coal-fired power plants. Also, a significant emission of primary and secondary fine particles is associated with the cooling towers. These particles contain heavy metals and are enriched in sodium, vanadium, zinc, phosphorous, sulphur, tantalium, caesium, thallium, thorium, uranium, and arsenic relative to comparable aerosols collected in Florence and Arezzo (2). Measurements have shown that mercury emitted at Amiata comprises 42% of the mercury emitted from all Italian industries, while an additional comparable amount is emitted from the other geothermal power plants of Tuscany (3). We believe that the use of air coolers in place of the evaporative cooling towers, as suggested in 2010 by the local government of Tuscany (4), could have and can now drastically reduced the environmental impact on freshwater and air. On the opposite side of the coin, air-coolers would increase the amount of reinjection, increasing the risk of induced seismicity. We conclude that the use of deep borehole heat exchangers could perhaps be the only viable solution to the current geothermal energy environmental impacts.


Author(s):  
Ankit N. Chaudhari ◽  
Darshan J. Mehta ◽  
Neeraj D. Sharma

Abstract Groundwater quality is a major problem for humanity since it is closely related to human health. The flow of seawater into freshwater aquifers is known as saltwater intrusion, and it can lead to groundwater quality contamination, including drinking water. Due to the extremely severe hydraulic interface between groundwater and seawater, saltwater intrusion can happen naturally in coastal aquifers. The aim of the study is to examine the status of seawater intrusion within the study region of the South-West zone of Surat city, Gujarat. The present study evaluates Groundwater Quality Index using a weighted arithmetic method including various chemical ions. The South-West zone of Surat city is located along the coast; seawater infiltration has a significant impact on the groundwater in the state. The conceptual model will be developed and analyzed using MODFLOW to analyze the effects of seawater intrusion analysis. The model domain is characterized by three hydro-stratographic layers and covers an area of approximately 110 km2 in a 400 m × 400 m grid size. An analytical study with MODFLOW would be carried out for three-dimensional groundwater flows with species of solute transport. This study would help profile the study area regarding Groundwater quality.


2021 ◽  
Vol 51 (2) ◽  
pp. 141-163
Author(s):  
Somvir SINGH ◽  
Param K. GAUTAM ◽  
Prashant KUMAR ◽  
Arkoprovo BISWAS ◽  
Tandrila SARKAR

Tuticorin, located in the southeastern part of Tamil Nadu, is a coastal aquifer on which Vertical Electrical Sounding (VES) was conducted, thereby analysing the interpreted subsurface resistivity layer parameters covering around 112 km2 area of the study region. VES is an essential tool for investigating hard rock terrains of coastal aquifers and perceive an idea about the groundwater quality. In this study, Dar-Zarrouk (D-Z) parameters like longitudinal conductance (Sc), transverse resistance (Tr) and anisotropy (λ) are analysed as these are well-established parameters in delineating the occurrence and distribution of both fresh and saline water aquifers. These parameters are also very persuasive in investigating complex subsurface parameters (resistivity and conductivity) within saline water intruded coastal region environment. After conducting a thorough survey, the resistivity results reflect that the sediments are enriched with saltwater, clay with moderate freshwater and freshwater-bearing formations. The analysis shows that the D-Z parameters offer a helpful and assured answer in demarcating the saline, moderate fresh, and freshwater aquifers. Therefore, the behaviour and patterns of the D-Z parameters in space established the existence of saline water and freshwater aquifer structures in the coastal aquifers over a vast area.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250791
Author(s):  
Haoying Wang

As oil production in the Permian Basin surges, the impact of shale production on groundwater resources has become a growing concern. Most existing studies focus on the impact of shale production on shallow freshwater aquifers. There is little understanding of the shale development’s impact on other groundwater resources (e.g., deep carbonate aquifers and deep basin meteoric aquifers). The possible natural hydraulic connections between shallow aquifers and formation water suggest such an impact can be consequential. This study explores the relationship between shale production and groundwater using produced water (PW) samples from active unconventional oil wells. Focusing on the most productive portion of the Permian Basin—the four-county region in Southeast New Mexico between 2007 and 2016, a large produced water dataset allows us to analyze the conditional correlations between shale oil production and PW constituents. The results suggest that (1) expanding from primarily conventional wells to unconventional wells during the recent shale boom has led to dramatic increases of the TDS, chloride, sodium, and calcium levels in groundwater (i.e., producing formation). (2) Nearby oil well density positively correlates with the TDS, chloride, and sodium levels in the PW samples.


2021 ◽  
Vol 280 ◽  
pp. 09006
Author(s):  
Yevheniia Anpilova ◽  
Yevhenii Yakovliev ◽  
Rolf Petry ◽  
Volodymyr Horbulin

Complex economic, geological-technological state of coal mines and impact of the armed conflict factors (the breakdown of energy supply, objects of critical infrastructure, etc.) accelerated closure of coal mines by the method of “wet preservation” in particular. In most developed EU countries decommissioning of coal mines, which have great depth (up to 1,0-1,5 km) and areas of minefields, occurs according to the post-mining (PM) research and production complex, which is based on the scientific and technological activities regarding prevention of dangerous changes in the geological environment (GE) - subsidence of ground surface, lands flooding, emission of explosive and toxic gases as well as reduction of outflows of polluted water into the local river basins (RB) and the soil aquifer. Additionally, PM suggests some mining works turning into the hydraulic-filtration system of mine water retention at a depth of 250-350 m with a purpose of preventing pollution flow into the freshwater aquifers and river network, preserving regional aquitards, degassing of mountain surface. In general, the PM activities complex aims at maintaining the balance and protective potential of the GE as mineral and landscape basis of the biosphere, elimination of dangerous changes in ecological parameters of the hydrographical network. It is shown that new models of subsoil and water use, geological prospecting structure, scientific basis for permissible changes in GE and RB are required together with closure of “old” mining works (MW) and opening of new ones, improvement of the environment monitoring based on GIS technologies and Earth remote sensing.


2021 ◽  
Author(s):  
Christian Berndt

SO277 OMAX served two scientific projects. The objectives of the first project, SMART, were to develop multi-disciplinary methodologies to detect, quantify, and model offshore groundwater reservoirs in regions dominated by carbonate geology such as the Mediterranean Sea. To this end we acquired controlled-source electromagnetic, seismic, hydroacoustic, geochemical, seafloor imagery data off Malta. Preliminary evaluation of the geophysical data show that there are resisitivity anomalies that may represent offshore freshwater aquifers. The absence of evidence for offshore springs means that these aquifers would be confined and that it will be difficult to use them in a sustainable manner. The objective of the second project, MAPACT-ETNA, is to monitor the flank of Etna volcano on Sicily which is slowly deforming seaward. Here, we deployed six seafloor geodesy stations and six ocean bottom seismometers for long-term observation (1-3 years). In addition, we mapped the seafloor off Mt. Etna and off the island of Stromboli to constrain the geological processes that control volcanic flank stability.


2020 ◽  
Vol 25 (4) ◽  
pp. 545-556
Author(s):  
Mustafa Saribudak ◽  
Dale F. Rucker ◽  
Allan Haas

Abandoned wells may act as conduits for the contamination of groundwater by oil field brines and other pollutants. The steel casings of abandoned wells eventually develop leaks, which if not properly plugged, can allow pollutants to reach freshwater aquifers that supply drinking water. Resistivity surveys were conducted in the vicinity of five abandoned oil wells in order to characterize the near-surface geology and to determine the effects of the steel casings and potential leakage. The arrays consisted of dipole-dipole (DD) and inverse Schlumberger (SLB) arrays. The effects from steel cased wells can manifest as low resistivity anomalies in the vicinity of the casings, depending on proximity of the line to the well, well location along the line, and the specific array used. These features appear as vertical, circular, elliptical, and bell-like anomalies. However, in some instances with the SLB array, the data appear not to be affected by the presence of steel casings. This observation is significant because resistivity surveys utilizing the SLB array can provide reliable information on near-surface geology next to abandoned wells, and horizontal and vertical extension of brine impacted areas due to leaking abandoned oil wells. The DD array, on the other hand, is better at locating potentially hidden abandoned wells but interpreting subsurface structure or contamination with the array is more difficult.


Geophysics ◽  
2020 ◽  
pp. 1-39
Author(s):  
Colin M. Sayers

Unconsolidated sands provide zones of high porosity and permeability important for freshwater aquifers, hydrocarbon production and CO2 sequestration. An understanding of the acoustics of unconsolidated sands enables the characterization of such formations using ultrasonics, borehole acoustics and seismic methods. Inversion of ultrasonic compressional and shear velocities measured for unloading as a function of confining pressure for room-dry unconsolidated sands allows information on the mechanical properties of the grain contacts to be obtained using an approach based on the divergence theorem. This allows the effective compliance of sand to be written as the sum of the compliance of the pores and of the grain contacts and does not assume that the grains are identical spheres, in contrast to previous approaches. Grain contacts are found to be more compliant under shear than under normal compression, and the ratio of the normal-to-shear compliance decreases with decreasing confining pressure, implying that the shear compliance increases faster with decreasing confining pressure than the normal compliance. This is of importance in understanding the role of shear in the failure of unconsolidated sands, such as occurs in shallow water flow, sanding and failure around injectors, where the change in stress is a function of the ratio of the normal-to-shear compliance ratio of the grain contacts.


2020 ◽  
Vol 90 (9) ◽  
pp. 980-1010
Author(s):  
Georg J. Houben ◽  
Stephan Kaufhold ◽  
Roy McG Miller ◽  
Christoph Lohe ◽  
Matthias Hinderer ◽  
...  

ABSTRACT The Cenozoic Kalahari Basin covers large parts of southern Africa. A continuous 400 m core was obtained in northern Namibia and analyzed in detail. Here, we present sedimentological, geochemical, mineralogical, granulometric, and hydraulic data, which were used to derive the sedimentation history and the Cenozoic paleoclimate and paleogeography of SW Africa. The first absolute ages for the Kalahari Basin were obtained by dating of calcretes, which showed that the core covers almost the entire Cenozoic. Two megafans could be distinguished. The older, buried Olukonda Megafan stems from a mafic source rock, potentially the Kunene Intrusive Complex, and was deposited by a paleo–Kunene River towards the southeast and east, under a semiarid climate. The younger Cubango Megafan (Andoni Formation) has a completely different provenance, namely felsic metamorphic and granitoid rocks, transported from the north by the Cubango River. The capture of the Kunene towards the Atlantic during the Eocene resulted in this change in provenance. Despite the distinct differences between the formations, the temporal hiatus between them must have been short. The results are a showcase of the potential of megafans for hosting major deep freshwater aquifers.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2299 ◽  
Author(s):  
Abdullah Karim ◽  
Marangely Gonzalez Cruz ◽  
Elma A. Hernandez ◽  
Venkatesh Uddameri

A fit for purpose (FFP) framework has been developed to evaluate the suitability of brackish water resources for various competing uses. The suitability or the extent of unsuitability for an intended use is quantified using an overall compatibility index (OCI). The approach is illustrated by applying it to evaluate the feasibility of the Dockum Hydrostratigraphic Unit (Dockum-HSU) as a water supply alternative in the Southern High Plains (SHP) region of Texas. The groundwater in Dockum-HSU is most compatible for hydraulic fracturing uses. While the water does not meet drinking water standards, it can be treated with existing desalination technologies over most of the study area, except perhaps near major population centers. The groundwater from Dockum-HSU is most compatible for cotton production, but not where it is currently grown. It can be a useful supplement to facilitate a smoother transition of corn to sorghum cropping shifts happening in parts of the SHP. Total Dissolved Solids (TDS), Sodium Absorption Ratio (SAR), sodium, sulfate, and radionuclides are major limiting constituents. Dockum-HSU can help reduce the freshwater footprint of the Ogallala Aquifer in the SHP by supporting non-agricultural uses. Greater regional collaboration and more holistic water management practices are however necessary to optimize brackish groundwater use.


Sign in / Sign up

Export Citation Format

Share Document