Ice-dams, outburst floods, and movement heterogeneity of glaciers, Karakoram

2019 ◽  
Vol 180 ◽  
pp. 100-116 ◽  
Author(s):  
Rakesh Bhambri ◽  
Kenneth Hewitt ◽  
Prashant Kawishwar ◽  
Amit Kumar ◽  
Akshaya Verma ◽  
...  
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaiheng Hu ◽  
Chaohua Wu ◽  
Li Wei ◽  
Xiaopeng Zhang ◽  
Qiyuan Zhang ◽  
...  

AbstractLandslide dam outburst floods have a significant impact on landform evolution in high mountainous areas. Historic landslide dams on the Yigong River, southeastern Tibet, generated two outburst superfloods > 105 m3/s in 1902 and 2000 AD. One of the slackwater deposits, which was newly found immediately downstream of the historic dams, has been dated to 7 ka BP. The one-dimensional backwater stepwise method gives an estimate of 225,000 m3/s for the peak flow related to the paleo-stage indicator of 7 ka BP. The recurrence of at least three large landslide dam impoundments and super-outburst floods at the exit of Yigong Lake during the Holocene greatly changed the morphology of the Yigong River. More than 0.26 billion m3 of sediment has been aggraded in the dammed lake while the landslide sediment doubles the channel slope behind the dam. Repeated landslide damming may be a persistent source of outburst floods and impede the upstream migration of river knickpoints in the southeastern margin of Tibet.


Author(s):  
Áslaug Geirsdóttir ◽  
Gifford H. Miller ◽  
David J. Harning ◽  
Hrafnhildur Hannesdóttir ◽  
Thor Thordarson ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.


2016 ◽  
Author(s):  
Wang Shijin

Abstract. The paper analyzed synthetically spatial distribution and evolution status of moraine-dammed lakes in the Nyainqentanglha Mountain, revealed risk degree of county-based potential dangerous glacial lakes (PDGLs) outburst floods disaster by combining PDGLs outburst hazard, regional exposure, vulnerability of exposed elements and adaptation capability and using the Analytic Hierarchy Process and Weighted Comprehensive Method. The results indicate that 132 moraine-dammed lakes (> 0.02 km2) with a total area of 38.235 km2 were detected in the Nyainqentanglha in the 2010s, the lake number decreased only by 5 %, whereas total lake area expanded by 22.72 %, in which 54 lakes with a total area of 17.53 km2 are identified as PDGLs and total area increased by 144.31 %, higher significantly than 4.06 % of non-PDGLs. The zones at very high and high integrated risk of glacial lakes outburst floods (GLOFs) disaster are concentrated in the eastern Nyainqentanglha, whereas low and very low integrated risk zones are located mainly in the western Nyainqentanglha. On the county scale, Nagque and Nyingchi have the lowest hazard risk, Banbar has the highest hazard and vulnerability risk, Sog and Lhorong have the highest exposure risk. In contrast, Biru and Jiali have the highest vulnerability risk, while Gongbo'gyamda and Damxung have lowest adaptation capacity. The regionalization results for GLOF disaster risk in the study are consistent with the distribution of historical disaster sites across the Nyainqentanglha.


Geology ◽  
1999 ◽  
Vol 27 (9) ◽  
pp. 847 ◽  
Author(s):  
John M. Jaeger ◽  
Charles A. Nittrouer

2010 ◽  
Vol 31 (6) ◽  
pp. 508-527 ◽  
Author(s):  
Peng Cui ◽  
Chao Dang ◽  
Zunlan Cheng ◽  
Kevin M. Scott

Sign in / Sign up

Export Citation Format

Share Document