U–Pb, trace element and Lu–Hf properties of unique dissolution–reprecipitation zircon from UHP eclogite in SW Sulu terrane, eastern China

2012 ◽  
Vol 22 (1) ◽  
pp. 169-183 ◽  
Author(s):  
Fulai Liu ◽  
Axel Gerdes ◽  
Pinghua Liu
Lithos ◽  
2007 ◽  
Vol 95 (3-4) ◽  
pp. 441-457 ◽  
Author(s):  
Hong-Feng Tang ◽  
Cong-Qiang Liu ◽  
Shun'ichi Nakai ◽  
Yuji Orihashi

2020 ◽  
Vol 105 (11) ◽  
pp. 1712-1723
Author(s):  
Yu Zhang ◽  
Pete Hollings ◽  
Yongjun Shao ◽  
Dengfeng Li ◽  
Huayong Chen ◽  
...  

Abstract The origin of stratabound deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt (MLYRB), Eastern China, is the subject of considerable debate. The Xinqiao Cu-Fe-Au deposit in the Tongling ore district is a typical stratabound ore body characterized by multi-stage magnetite. A total of six generations of magnetite have been identified. Mt1 is commonly replaced by porous Mt2, and both are commonly trapped in the core of Mt3, which is characterized by both core-rim textures and oscillatory zoning. Porous Mt4 commonly truncates the oscillatory zoning of Mt3, and Mt5 is characterized by 120° triple junction texture. Mt1 to Mt5 are commonly replaced by pyrite that coexists with quartz, whereas Mt6, with a fine-grained foliated and needle-like texture, commonly cuts the early pyrite as veins and is replaced by pyrite that coexists with calcite. The geochemistry of the magnetite suggests that they are hydrothermal in origin. The microporosity of Mt2 and Mt4 magnetite, their sharp contacts with Mt1 and Mt3, and lower trace-element contents (e.g., Si, Ca, Mg, and Ti) than Mt1 and Mt3 suggest that they formed via coupled dissolution and reprecipitation of the precursor Mt1 and Mt3 magnetite, respectively. This was likely caused by high-salinity fluids derived from intensive water-rock interaction between the magmatic-hydrothermal fluids associated with the Jitou stock and Late Permian metalliferous black shales. The 120° triple junction texture of Mt5 suggests it is the result of fluid-assisted recrystallization, whereas Mt6 formed by replacement of hematite as a result of fracturing. The geochemistry of the magnetite suggests that the temperature increased from Mt2 to Mt3 and implies that there were multiple pulses of fluids from a magmatic-hydrothermal system. Therefore, we propose that the Xinqiao stratiform mineralization was genetically associated with multiple influxes of magmatic hydrothermal fluids derived from the Early Cretaceous Jitou stock. This study demonstrates that detailed texture examination and in situ trace-elements analysis under robust geological and petrographic frameworks can effectively constrain the mineralization processes and ore genesis.


Island Arc ◽  
2003 ◽  
Vol 12 (3) ◽  
pp. 256-267 ◽  
Author(s):  
Fulai Liu ◽  
Zeming Zhang ◽  
Ikuo Katayama ◽  
Zhiqin Xu ◽  
Shigenori Maruyama

2018 ◽  
Vol 55 (12) ◽  
pp. 1312-1323 ◽  
Author(s):  
Xinyun Zhao ◽  
Libo Hao ◽  
Qiaoqiao Wei ◽  
Qingqing Liu ◽  
Jian Zhou ◽  
...  

There are many Late Triassic mafic–ultramafic intrusions in the Hongqiling magmatic Ni–Cu sulfide deposit, Northeast China. Research on magma evolution leading to formation of these mafic–ultramafic intrusions is of great significance for understanding the mantle beneath Northeast China and associated Ni–Cu mineralization. A trace element study of the No. 1, 3, and 7 intrusions in the Hongqiling deposit reveals that these mafic–ultramafic intrusions are characterized by enrichment of incompatible elements, which however cannot be interpreted by subduction modification. Furthermore, model of batch partial melting of depleted mantle accompanied by upper crustal contamination can simulate the trace element patterns of these mafic–ultramafic intrusions, but partial melting of depleted mantle accompanied by lower crustal contamination model cannot work. In addition, Sr–Nd isotopic compositions of the Hongqiling No. 1, 3, and 7 intrusions also indicate that crustal contamination could have occurred mainly during the magma ascent. Consequently, a possible scenario for the magma evolution is that the primary mafic–ultramafic magma was derived from batch partial melting of a depleted mantle, and then contaminated by Cambrian–Ordovician metamorphic rocks of the Hulan Group during ascent. We conclude that the mantle source contained no significant crustal component in the Late Triassic and was also independent of substantial contribution from subducted material, and therefore the Mesozoic large-scale lithospheric delamination beneath eastern China may happen after a period of time of the Late Triassic.


2005 ◽  
Vol 47 (8) ◽  
pp. 872-886 ◽  
Author(s):  
Li-Hung Lin ◽  
Pei-Ling Wang ◽  
Ching-Hua Lo ◽  
Chin-Ho Tsai ◽  
Bor-Ming Jahn

Sign in / Sign up

Export Citation Format

Share Document