Intraoperative transimpedance and spread of excitation profile correlations with a lateral-wall cochlear implant electrode array

2021 ◽  
Vol 405 ◽  
pp. 108235
Author(s):  
Samuel Söderqvist ◽  
Satu Lamminmäki ◽  
Antti Aarnisalo ◽  
Timo Hirvonen ◽  
Saku T. Sinkkonen ◽  
...  
2017 ◽  
Vol 132 (3) ◽  
pp. 224-229 ◽  
Author(s):  
P Mittmann ◽  
A Ernst ◽  
I Todt

AbstractBackground:Preservation of residual hearing is one of the major goals in modern cochlear implant surgery. Intra-cochlear fluid pressure changes influence residual hearing, and should be kept low before, during and after cochlear implant insertion.Methods:Experiments were performed in an artificial cochlear model. A pressure sensor was inserted in the apical part. Five insertions were performed on two electrode arrays. Each insertion was divided into three parts, and statistically evaluated in terms of pressure peak frequency and pressure peak amplitude.Results:The peak frequency over each third part of the electrode increased in both electrode arrays. A slight increase was seen in peak amplitude in the lateral wall electrode array, but not in the midscalar electrode array. Significant differences were found in the first third of both electrode arrays.Conclusion:The midscalar and lateral wall electrode arrays have different intra-cochlear fluid pressure changes associated with intra-cochlear placement, electrode characteristics and insertion.


2021 ◽  
pp. 019459982098745
Author(s):  
Michael W. Canfarotta ◽  
Margaret T. Dillon ◽  
Kevin D. Brown ◽  
Harold C. Pillsbury ◽  
Matthew M. Dedmon ◽  
...  

Objective High rates of partial insertion have been reported for cochlear implant (CI) recipients of long lateral wall electrode arrays, presumably caused by resistance encountered during insertion due to cochlear morphology. With recent advances in long-electrode array design, we sought to investigate (1) the incidence of complete insertions among patients implanted with 31.5-mm flexible arrays and (2) whether complete insertion is limited by cochlear duct length (CDL). Study Design Retrospective review. Setting Tertiary referral center. Methods Fifty-one adult CI recipients implanted with 31.5-mm flexible lateral wall arrays underwent postoperative computed tomography to determine the rate of complete insertion, defined as all contacts being intracochlear. CDL and angular insertion depth (AID) were compared between complete and partial insertion cohorts. Results Most cases had a complete insertion (96.1%, n = 49). Among the complete insertion cohort, the median CDL was 33.6 mm (range, 30.3-37.9 mm), and median AID was 641° (range, 533-751°). Two cases of partial insertion had relatively short CDL (31.8 mm and 32.3 mm) and shallow AID (542° and 575°). Relatively shallow AID for the 2 cases of partial insertion fails to support the idea that CDL alone prevents a complete insertion. Conclusion Complete insertion of a 31.5-mm flexible array is feasible in most cases and does not appear to be limited by the range of CDL observed in this cohort. Future studies are needed to estimate other variations in cochlear morphology that could predict resistance and failure to achieve complete insertion with long arrays.


2016 ◽  
Vol 21 (5) ◽  
pp. 316-325 ◽  
Author(s):  
M. Annerie van der Jagt ◽  
Jeroen J. Briaire ◽  
Berit M. Verbist ◽  
Johan H.M. Frijns

The HiFocus Mid-Scala (MS) electrode array has recently been introduced onto the market. This precurved design with a targeted mid-scalar intracochlear position pursues an atraumatic insertion and optimal distance for neural stimulation. In this study we prospectively examined the angular insertion depth achieved and speech perception outcomes resulting from the HiFocus MS electrode array for 6 months after implantation, and retrospectively compared these with the HiFocus 1J lateral wall electrode array. The mean angular insertion depth within the MS population (n = 96) was found at 470°. This was 50° shallower but more consistent than the 1J electrode array (n = 110). Audiological evaluation within a subgroup, including only postlingual, unilaterally implanted, adult cochlear implant recipients who were matched on preoperative speech perception scores and the duration of deafness (MS = 32, 1J = 32), showed no difference in speech perception outcomes between the MS and 1J groups. Furthermore, speech perception outcome was not affected by the angular insertion depth or frequency mismatch.


2017 ◽  
Vol 22 (3) ◽  
pp. 169-179 ◽  
Author(s):  
Antje Aschendorff ◽  
Robert Briggs ◽  
Goetz Brademann ◽  
Silke Helbig ◽  
Joachim Hornung ◽  
...  

Aims: The Nucleus CI532 cochlear implant incorporates a new precurved electrode array, i.e., the Slim Modiolar electrode (SME), which is designed to bring electrode contacts close to the medial wall of the cochlea while avoiding trauma due to scalar dislocation or contact with the lateral wall during insertion. The primary aim of this prospective study was to determine the final position of the electrode array in clinical cases as evaluated using flat-panel volume computed tomography. Methods: Forty-five adult candidates for unilateral cochlear implantation were recruited from 8 centers. Eleven surgeons attended a temporal bone workshop and received further training with a transparent plastic cochlear model just prior to the first surgery. Feedback on the surgical approach and use of the SME was collected via a questionnaire for each case. Computed tomography of the temporal bone was performed postoperatively using flat-panel digital volume tomography or cone beam systems. The primary measure was the final scalar position of the SME (completely in scala tympani or not). Secondly, medial-lateral position and insertion depth were evaluated. Results: Forty-four subjects received a CI532. The SME was located completely in scala tympani for all subjects. Pure round window (44% of the cases), extended round window (22%), and inferior and/or anterior cochleostomy (34%) approaches were successful across surgeons and cases. The SME was generally positioned close to the modiolus. Overinsertion of the array past the first marker tended to push the basal contacts towards the lateral wall and served only to increase the insertion depth of the first electrode contact without increasing the insertion depth of the most apical electrode. Complications were limited to tip fold-overs encountered in 2 subjects; both were attributed to surgical error, with both reimplanted successfully. Conclusions: The new Nucleus CI532 cochlear implant with SME achieved the design goal of producing little or no trauma as indicated by consistent scala tympani placement. Surgeons should be carefully trained to use the new deployment method such that tip fold-overs and over insertion may be avoided.


2015 ◽  
Vol 20 (6) ◽  
pp. 349-353 ◽  
Author(s):  
Philipp Mittmann ◽  
Grit Rademacher ◽  
Sven Mutze ◽  
Arneborg Ernst ◽  
Ingo Todt

Migration of a cochlear implant electrode is a hitherto uncommon complication. So far, array migration has only been observed in lateral wall electrodes. Between 1999 and 2014, a total of 27 patients received bilateral perimodiolar electrode arrays at our institution. The insertion depth angle was estimated on the initial postoperative scans and compared with the insertion depth angle of the postoperative scans performed after contralateral cochlear implantation. Seven (25.93%) patients were found to have an electrode array migration of more than 15°. Electrode migration in perimodiolar electrodes seems to be less frequent and to occur to a lower extent than in lateral wall electrodes. Electrode migration was clinically asymptomatic in all cases.


2007 ◽  
Vol 122 (3) ◽  
pp. 246-252 ◽  
Author(s):  
S Berrettini ◽  
F Forli ◽  
S Passetti

AbstractThe preservation of residual hearing is becoming a high priority in cochlear implant surgery. It allows better speech understanding and ensures long-lasting and stable performance; it also allows the possibility, in selected cases, of combining electro-acoustic stimulation in the same ear.We present the results of a retrospective study of the conservation of residual hearing in three different groups of patients who had undergone cochlear implantation using three different cochlear implant electrode arrays, combined with three different surgical techniques for the cochleostomy. The study aimed to evaluate which approach allowed greater preservation of residual hearing.The best residual hearing preservation results (i.e. preservation in 81.8 per cent of patients) were achieved with the Contour Advance electrode array, using the Advance Off-Stylet technique and performing a modified anterior inferior cochleostomy; this combination enabled reduced trauma to the lateral wall of the cochlea during electrode insertion.


2019 ◽  
Vol 23 (3) ◽  
pp. 145-152 ◽  
Author(s):  
Ji Young Lee ◽  
Sung Hwa Hong ◽  
Il Joon Moon ◽  
Eun Yeon Kim ◽  
Eunjoo Baek ◽  
...  

2019 ◽  
Vol 24 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Jeroen P.M. Peters ◽  
Edwin Bennink ◽  
Gijsbert A. van Zanten

Background: In electric-acoustic pitch matching experiments in patients with single-sided deafness and a cochlear implant, the observed “mismatch” between perceived pitch and predicted pitch, based on the amended Greenwood frequency map, ranges from –1 to –2 octaves. It is unknown if and how this mismatch differs for perimodiolar versus lateral wall electrode arrays. Objectives: We aimed to investigate if the type of electrode array design is of influence on the electric-acoustic pitch match. Method: Fourteen patients (n = 8 with CI422 + lateral wall electrode array, n = 6 with CI512 + perimodiolar electrode array; Cochlear Ltd.) compared the pitch of acoustic stimuli to the pitch of electric stimuli at two test sessions (average interval 4.3 months). We plotted these “pitch matches” per electrode contact against insertion angle, calculated from high-resolution computed tomography scans. The difference between these pitch matches and two references (the spiral ganglion map and the default frequency allocation by Cochlear Ltd.) was defined as “mismatch.” Results: We found average mismatches of –2.2 octaves for the CI422 group and –1.3 octaves for the CI512 group. For any given electrode contact, the mismatch was smaller for the CI512 electrode array than for the CI422 electrode array. For all electrode contacts together, there was a significant difference between the mismatches of the two groups (p < 0.05). Results remained stable over time, with no significant difference between the two test sessions considering all electrode contacts. Neither group showed a significant correlation between the mismatch and phoneme recognition scores. Conclusion: The pitch mismatch was smaller for the perimodiolar electrode array than for the lateral wall electrode array.


Author(s):  
Iris Burck ◽  
Rania A. Helal ◽  
Nagy N. N. Naguib ◽  
Nour-Eldin A. Nour-Eldin ◽  
Jan-Erik Scholtz ◽  
...  

Abstract Objectives To correlate the radiological assessment of the mastoid facial canal in postoperative cochlear implant (CI) cone-beam CT (CBCT) and other possible contributing clinical or implant-related factors with postoperative facial nerve stimulation (FNS) occurrence. Methods Two experienced radiologists evaluated retrospectively 215 postoperative post-CI CBCT examinations. The mastoid facial canal diameter, wall thickness, distance between the electrode cable and mastoid facial canal, and facial-chorda tympani angle were assessed. Additionally, the intracochlear position and the insertion angle and depth of electrodes were evaluated. Clinical data were analyzed for postoperative FNS within 1.5-year follow-up, CI type, onset, and causes for hearing loss such as otosclerosis, meningitis, and history of previous ear surgeries. Postoperative FNS was correlated with the measurements and clinical data using logistic regression. Results Within the study population (mean age: 56 ± 18 years), ten patients presented with FNS. The correlations between FNS and facial canal diameter (p = 0.09), wall thickness (p = 0.27), distance to CI cable (p = 0.44), and angle with chorda tympani (p = 0.75) were statistically non-significant. There were statistical significances for previous history of meningitis/encephalitis (p = 0.001), extracochlear-electrode-contacts (p = 0.002), scala-vestibuli position (p = 0.02), younger patients’ age (p = 0.03), lateral-wall-electrode type (p = 0.04), and early/childhood onset hearing loss (p = 0.04). Histories of meningitis/encephalitis and extracochlear-electrode-contacts were included in the first two steps of the multivariate logistic regression. Conclusion The mastoid-facial canal radiological assessment and the positional relationship with the CI electrode provide no predictor of postoperative FNS. Histories of meningitis/encephalitis and extracochlear-electrode-contacts are important risk factors. Key Points • Post-operative radiological assessment of the mastoid facial canal and the positional relationship with the CI electrode provide no predictor of post-cochlear implant facial nerve stimulation. • Radiological detection of extracochlear electrode contacts and the previous clinical history of meningitis/encephalitis are two important risk factors for postoperative facial nerve stimulation in cochlear implant patients. • The presence of scala vestibuli electrode insertion as well as the lateral wall electrode type, the younger patient’s age, and early onset of SNHL can play important role in the prediction of post-cochlear implant facial nerve stimulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ben Somers ◽  
Christopher J. Long ◽  
Tom Francart

AbstractThe cochlear implant is one of the most successful medical prostheses, allowing deaf and severely hearing-impaired persons to hear again by electrically stimulating the auditory nerve. A trained audiologist adjusts the stimulation settings for good speech understanding, known as “fitting” the implant. This process is based on subjective feedback from the user, making it time-consuming and challenging, especially in paediatric or communication-impaired populations. Furthermore, fittings only happen during infrequent sessions at a clinic, and therefore cannot take into account variable factors that affect the user’s hearing, such as physiological changes and different listening environments. Objective audiometry, in which brain responses evoked by auditory stimulation are collected and analysed, removes the need for active patient participation. However, recording of brain responses still requires expensive equipment that is cumbersome to use. An elegant solution is to record the neural signals using the implant itself. We demonstrate for the first time the recording of continuous electroencephalographic (EEG) signals from the implanted intracochlear electrode array in human subjects, using auditory evoked potentials originating from different brain regions. This was done using a temporary recording set-up with a percutaneous connector used for research purposes. Furthermore, we show that the response morphologies and amplitudes depend crucially on the recording electrode configuration. The integration of an EEG system into cochlear implants paves the way towards chronic neuro-monitoring of hearing-impaired patients in their everyday environment, and neuro-steered hearing prostheses, which can autonomously adjust their output based on neural feedback.


Sign in / Sign up

Export Citation Format

Share Document