Robotics, Automation, Active Electrode Arrays, and New Devices for Cochlear Implantation: A Contemporary Review

2021 ◽  
pp. 108425
Author(s):  
Daniele De Seta ◽  
Hannah Daoudi ◽  
Renato Torres ◽  
Evelyne Ferrary ◽  
Olivier Sterkers ◽  
...  
2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Rolf Salcher ◽  
Aaron Boruchov ◽  
Max Timm ◽  
Melanie Steffens ◽  
Anja Giesemann ◽  
...  

2015 ◽  
Vol 17 (6) ◽  
Author(s):  
Vasiliki Giagka ◽  
Andreas Demosthenous ◽  
Nick Donaldson

2021 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
Santosh Kumar Swain

Cochlear implantation is indicated in patients with severe to profound hearing loss that cannot be adequately treated by other auditory rehabilitation measures. The definitive indication of cochlear implantation is made on the basis of an extensive interdisciplinary clinical, audiological, radiological, and psychological diagnostic work-up. There are numerous changes are happening in cochlear implant candidacy. These have been associated with concomitant changes in surgical techniques, which enhanced the utility and safety of cochlear implantation. Currently, cochlear implants are approved for individuals with severe to profound unilateral hearing loss rather than previously needed for bilateral profound hearing loss. Studies have begun using the short electrode arrays for shallow insertion in patients with low-frequency residual hearing loss. The advancement in designs of the cochlear implant along with improvements in surgical techniques reduce the complications and result in the safety and efficacy of the cochlear implant which further encourages the use of these devices. This review article aims to discuss the new concepts in the candidacy of the cochlear implant, cochlear implant in younger children and hearing preservation, a cochlear implant for unilateral deafness, bilateral cochlear implant, and cochlear implant with neural plasticity and selection of patients for the cochlear implant.


2021 ◽  
Vol 23 (1) ◽  
pp. 351
Author(s):  
Jae Sik Kim ◽  
Seong Woo Choi ◽  
Yun-Gwi Park ◽  
Sung Joon Kim ◽  
Chang Heon Choi ◽  
...  

Cardiac radioablation is emerging as an alternative option for refractory ventricular arrhythmias. However, the immediate acute effect of high-dose irradiation on human cardiomyocytes remains poorly known. We measured the electrical activities of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) upon irradiation with 0, 20, 25, 30, 40, and 50 Gy using a multi-electrode array, and cardiomyocyte function gene levels were evaluated. iPSC-CMs showed to recover their electrophysiological activities (total active electrode, spike amplitude and slope, and corrected field potential duration) within 3–6 h from the acute effects of high-dose irradiation. The beat rate immediately increased until 3 h after irradiation, but it steadily decreased afterward. Conduction velocity slowed in cells irradiated with ≥25 Gy until 6–12 h and recovered within 24 h; notably, 20 and 25 Gy-treated groups showed subsequent continuous increase. At day 7 post-irradiation, except for cTnT, cardiomyocyte function gene levels increased with increasing irradiation dose, but uniquely peaked at 25–30 Gy. Altogether, high-dose irradiation immediately and reversibly modifies the electrical conduction of cardiomyocytes. Thus, compensatory mechanisms at the cellular level may be activated after the high-dose irradiation acute effects, thereby, contributing to the immediate antiarrhythmic outcome of cardiac radioablation for refractory ventricular arrhythmias.


2015 ◽  
Vol 20 (2) ◽  
pp. 102-111 ◽  
Author(s):  
Frederic Venail ◽  
Caroline Mathiolon ◽  
Sophie Menjot de Champfleur ◽  
Jean Pierre Piron ◽  
Marielle Sicard ◽  
...  

Frequency-place mismatch often occurs after cochlear implantation, yet its effect on speech perception outcome remains unclear. In this article, we propose a method, based on cochlea imaging, to determine the cochlear place-frequency map. We evaluated the effect of frequency-place mismatch on speech perception outcome in subjects implanted with 3 different lengths of electrode arrays. A deeper insertion was responsible for a larger frequency-place mismatch and a decreased and delayed speech perception improvement by comparison with a shallower insertion, for which a similar but slighter effect was noticed. Our results support the notion that selecting an electrode array length adapted to each individual's cochlear anatomy may reduce frequency-place mismatch and thus improve speech perception outcome.


2002 ◽  
Vol 111 (11) ◽  
pp. 1008-1014 ◽  
Author(s):  
Hung Thai-Van ◽  
Stéphane Gallego ◽  
Evelyne Veuillet ◽  
Eric Truy ◽  
Lionel Collet

Bilateral cochlear implantation provides an interesting model for in vivo study of the effect of long-term profound deafness on neural transmission. We present electrophysiological observations on 2 patients implanted with the MXM Binaural Digisonic Convex system. This uncommon design consists of 2 electrode arrays placed bilaterally into the scala tympani and controlled by a single speech processor. In both patients, the duration of deafness before cochlear implantation clearly differed from one ear to the other. Electrically evoked auditory brain stem responses (EABRs) were measured and the EABRs from the ear with the longer deafness duration showed a lengthening of wave V latency. In 1 patient, recordings from this ear also showed a lack of reproducibility of wave III. The data suggest that neural responsiveness in the peripheral and intermediate auditory pathways is adversely affected by deafness duration. Poor EABRs on one ear possibly result from the total duration of deafness in this ear and/or compensation by the other ear.


2021 ◽  
pp. 1-6
Author(s):  
Ceyhun Ucta ◽  
Philipp Mittmann ◽  
Arneborg Ernst ◽  
Rainer Seidl ◽  
Gina Lauer

Objective: Atraumatic cochlear implantation (CI) and insertion of the electrode in particular are major goals of recent CI surgery. Perimodiolar electrode arrays need a stylet or exosheath for insertion. The sheath can influence the intracochlear pressure changes during insertion of the electrode. The aim of this study was to modify the insertion sheath to optimize intracochlear pressure changes. Methods: In an artifical cochlear model, 7 different modified insertion sheaths were used. The intracochlear pressure was measured with a micro-optical sensor in the apical part of the model cochlea. Results: Significant lower intracochlear pressure changes were observed when the apical part of the insertion sheath was either shortened or tapered. Modification of the stopper does influence the intracochlear pressure significantly. Conclusion: Modification of the insertion sheath leads to lower intracochlear pressure gain. The differences and impact on intracochlear pressure changes found in this study underline the importance of even subtle modifications of the electrode insertion technique.


2012 ◽  
Vol 17 (5) ◽  
pp. 331-337 ◽  
Author(s):  
Sharon Tamir ◽  
Evelyne Ferrary ◽  
Stéphanie Borel ◽  
Olivier Sterkers ◽  
Alexis Bozorg Grayeli

Sign in / Sign up

Export Citation Format

Share Document