scholarly journals Sex specific molecular responses of quick-to-court protein in Indian malarial vector Anopheles culicifacies : conflict of mating versus blood feeding behaviour

Heliyon ◽  
2017 ◽  
Vol 3 (7) ◽  
pp. e00361 ◽  
Author(s):  
Tanwee Das De ◽  
Punita Sharma ◽  
Charu Rawal ◽  
Seena Kumari ◽  
Sanjay Tavetiya ◽  
...  
Parasitology ◽  
1996 ◽  
Vol 113 (2) ◽  
pp. 105-109 ◽  
Author(s):  
J. C. Koella ◽  
M. J. Packer

SUMMARYWe investigated the blood-feeding behaviour of a natural population of the human-feeding mosquito Anopheles punctulatus in Iguruwe, Papua New Guinea. In particular we investigated the relationship between the mosquitoes' blood-feeding behaviour and their infection by the malaria parasites Plasmodium falciparum and P. vivax. Female mosquitoes were caught at 4 times of the night, the amount of blood they had obtained was measured and their status of infection was evaluated. Among uninfected mosquitoes the bloodmeal size steadily increased through the night, possibly because they were progressively less likely to be disturbed by human activity as the night drew on. Infected mosquitoes, on the other hand, tended to feed maximally at all times of the night. This suggests that infected mosquitoes were more tenacious in their blood-feeding behaviour, being either less readily disturbed during a bout of feeding (and thus feeding longer) or more likely to return to continue their feed following disturbance (and thus feeding several times). Either change would increase the parasites' rate of transmission. We conclude that in this natural situation the two species of malaria parasites modified the mosquitoes' behaviour with the effect of increasing their own transmission.


1991 ◽  
Vol 16 (2) ◽  
pp. 145-152 ◽  
Author(s):  
ANN ASCOLI-CHRISTENSEN ◽  
JAMES F. SUTCLIFFE ◽  
PAUL J. ALBERT

2017 ◽  
Author(s):  
Tanwee Das De ◽  
Tina Thomas ◽  
Sonia Verma ◽  
Deepak Singla ◽  
Charu Rawal ◽  
...  

AbstractDecoding the molecular basis of host seeking and blood feeding behavioral evolution/adaptation in the adult female mosquito may provide an opportunity to design new molecular strategy to disrupt human-mosquito interactions. However, despite the great progress in the field of mosquito olfaction and chemo-detection, little is known that how the sex-specific specialization of the olfactory system enables adult female mosquitoes to derive and manage complex blood feeding associated behavioral responses. A comprehensive RNAseq analysis of prior and post blood meal olfactory system of An. culicifacies mosquito revealed that a minor but unique change in the nature and regulation of key olfactory genes play a pivotal role in managing diverse behavioral responses. Age dependent transcriptional profiling demonstrated that adult female mosquito’s chemosensory system gradually learned and matured to drive the host-seeking and blood feeding behavior at the age of 5-6 days. A zeitgeber time scale expression analysis of Odorant Binding Proteins (OBPs) unravels unique association with a late evening to midnight peak biting time. Blood meal-induced switching of unique sets of OBP genes and Odorant Receptors (ORs) expression coincides with the change in the innate physiological status of the mosquitoes. Blood meal follows up experiments provide enough evidence that how a synergistic and concurrent action of OBPs-ORs may drive ‘prior and post blood meal’ complex behavioral events. Finally, tissue-specific gene expression analysis and molecular modelling predicted two uncharacterized novel sensory appendages proteins (SAP-1 & SAP2) unique to An. culicifacies mosquito and may play a central role in the host-seeking behavior.SignificanceEvolution and adaptation of blood feeding behavior not only favored the reproductive success of adult female mosquito but also make them an important disease vectors. Immediately after emergence, an environmental exposure may favor the broadly tuned olfactory system of mosquitoes to derive complex behavioral responses. But, how these olfactory derived genetic factors manage female specific ‘pre and post’ blood meal associated complex behavioral responses are not well known. We unraveled synergistic actions of olfactory factors governs an innate to prime learning strategy to facilitate rapid blood meal acquisition and downstream behavioral activities. A species-specific transcriptional profiling and an in-silico analysis predict novel ‘sensory appendages protein’, as a unique target to design disorientation strategy against the mosquito Anopheles culicifacies.


2016 ◽  
Vol 27 (2) ◽  
pp. 168-174
Author(s):  
M Mala ◽  
M Imam ◽  
K Hassan

The parasite, Plasmodium needs an insect vector (mosquito) and a vertebrate host (human) to successful malaria transmission. The parasite use the vertebrate hosts for their asexual reproduction and insect host for sexual multiplication. In order to know the mechanism of disease transmission, knowledge about the possible interactions causes by the three components, vector, parasite and host is important. The mosquito feeding behaviour greatly contributes in the rate of malaria transmission. To assist the rate of transmission of malaria, the parasite, Plasmodium completes a complex developmental stage in the mosquito. In the mosquito the parasite, passes complex developmental stages and ensuing changes into three important forms of their life cycle: ookinete, oocyst and sporozoites. This review study concludes that, the interactions among vector, parasite and host in terms of reproductive behaviour and blood-feeding behaviour helps in transmitting malaria to the vertebrate hosts mainly, human being.Progressive Agriculture 27 (2): 168-174, 2016


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew Hope ◽  
Simon Gubbins ◽  
Christopher Sanders ◽  
James Barber ◽  
Francesca Stubbins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document