scholarly journals Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate

Heliyon ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. e01479 ◽  
Author(s):  
Ghulam Rasool ◽  
Ting Zhang
2012 ◽  
Vol 67 (8-9) ◽  
pp. 517-524 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Zahid Iqbal ◽  
Meraj Mustafa ◽  
Tasawar Hayat

The two-dimensional magnetohydrodynamic (MHD) flow of a Jeffrey fluid is investigated in this paper. The characteristics of heat and mass transfer with chemical reaction have also been analyzed. Convective boundary conditions have been invoked for the thermal boundary layer problem. Exact similarity solutions for flow, temperature, and concentration are derived. Interpretation to the embedded parameters is assigned through graphical results for dimensionless velocity, temperature, concentration, skin friction coefficient, and surface heat and mass transfer. The results indicate an increase in the velocity and the boundary layer thickness by increasing the rheological parameter of the Jeffrey fluid. An intensification in the chemical reaction leads to a thinner concentration boundary layer.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 741 ◽  
Author(s):  
Anum Shafiq ◽  
Ghulam Rasool ◽  
Chaudry Masood Khalique

This article is concerned with the nanofluid flow in a rotating frame under the simultaneous effects of thermal slip and convective boundary conditions. Arrhenius activation energy is another important aspect of the present study. Flow phenomena solely rely on the Darcy–Forchheimer-type porous medium in three-dimensional space to tackle the symmetric behavior of viscous terms. The stretching sheet is assumed to drive the fluid. Buongiorno’s model is adopted to see the features of Brownian diffusion and thermophoresis on the basis of symmetry fundamentals. Governing equations are modeled and transformed into ordinary differential equations by suitable transformations. Solutions are obtained through the numerical RK45-scheme, reporting the important findings graphically. The outputs indicate that larger values of stretching reduce the fluid velocity. Both the axial and transverse velocity fields undergo much decline due to strong retardation produced by the Forchheimer number. The thermal radiation parameter greatly raises the thermal state of the field. The temperature field rises for a stronger reaction within the fluid flow, however reducing for an intensive quantity of activation energy. A declination in the concentration profile is noticed for stronger thermophoresis. The Forchheimer number and porosity factors result in the enhancement of the skin friction, while both slip parameters result in a decline of skin friction. The thermal slip factor results in decreasing both the heat and mass flux rates. The study is important in various industrial applications of nanofluids including the electro-chemical industry, the polymer industry, geophysical setups, geothermal setups, catalytic reactors, and many others.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
P. K. Kameswaran ◽  
P. Sibanda ◽  
A. S. N. Murti

We investigate the effects of thermal radiation and convective boundary conditions on heat and mass transfer in nanofluid flow over a permeable flat plate. The mathematical model for the nanofluid incorporates variations in the nanoparticle volume fraction of up to 20%. The performance of two water-based nanofluids, namely, stable suspensions of copper and gold nanoparticles in water was investigated. The governing partial differential equations were transformed into ordinary ones using a similarity transformation and solved numerically. The numerical results were validated by comparison with previously published results in the literature. The main focus of this paper is to study the fluid and surface parameters such as the radiation parameter, and suction/injection parameter, solute concentration profiles, as well as the skin friction coefficient and heat and mass transfer rates were conducted.


Sign in / Sign up

Export Citation Format

Share Document