scholarly journals Rapid identification of unknown pathogens in environmental samples using a high-throughput sequencing-based approach

Heliyon ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. e01793 ◽  
Author(s):  
Ofir Israeli ◽  
Inbar Cohen-Gihon ◽  
Anat Zvi ◽  
Shirley Lazar ◽  
Ohad Shifman ◽  
...  
SOIL ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 257-270 ◽  
Author(s):  
Mohammed Ahmed ◽  
Melanie Sapp ◽  
Thomas Prior ◽  
Gerrit Karssen ◽  
Matthew Alan Back

Abstract. Nematodes represent a species-rich and morphologically diverse group of metazoans known to inhabit both aquatic and terrestrial environments. Their role as biological indicators and as key players in nutrient cycling has been well documented. Some plant-parasitic species are also known to cause significant losses to crop production. In spite of this, there still exists a huge gap in our knowledge of their diversity due to the enormity of time and expertise often involved in characterising species using phenotypic features. Molecular methodology provides useful means of complementing the limited number of reliable diagnostic characters available for morphology-based identification. We discuss herein some of the limitations of traditional taxonomy and how molecular methodologies, especially the use of high-throughput sequencing, have assisted in carrying out large-scale nematode community studies and characterisation of phytonematodes through rapid identification of multiple taxa. We also provide brief descriptions of some the current and almost-outdated high-throughput sequencing platforms and their applications in both plant nematology and soil ecology.


2012 ◽  
Vol 28 (8) ◽  
pp. 1174-1175 ◽  
Author(s):  
Aparna Bhaduri ◽  
Kun Qu ◽  
Carolyn S. Lee ◽  
Alexander Ungewickell ◽  
Paul A. Khavari

2018 ◽  
Author(s):  
Quinn K. Langdon ◽  
David Peris ◽  
Brian Kyle ◽  
Chris Todd Hittinger

AbstractThe genomics era has expanded our knowledge about the diversity of the living world, yet harnessing high-throughput sequencing data to investigate alternative evolutionary trajectories, such as hybridization, is still challenging. Here we present sppIDer, a pipeline for the characterization of interspecies hybrids and pure species,that illuminates the complete composition of genomes. sppIDer maps short-read sequencing data to a combination genome built from reference genomes of several species of interest and assesses the genomic contribution and relative ploidy of each parental species, producing a series of colorful graphical outputs ready for publication. As a proof-of-concept, we use the genus Saccharomyces to detect and visualize both interspecies hybrids and pure strains, even with missing parental reference genomes. Through simulation, we show that sppIDer is robust to variable reference genome qualities and performs well with low-coverage data. We further demonstrate the power of this approach in plants, animals, and other fungi. sppIDer is robust to many different inputs and provides visually intuitive insight into genome composition that enables the rapid identification of species and their interspecies hybrids. sppIDer exists as a Docker image, which is a reusable, reproducible, transparent, and simple-to-run package that automates the pipeline and installation of the required dependencies (https://github.com/GLBRC/sppIDer).


2022 ◽  
Vol 78 (02) ◽  
pp. 6622-2022
Author(s):  
ALEKSANDRA GIZA ◽  
EWELINA IWAN ◽  
DARIUSZ WASYL

High throughput sequencing (HTS) creates an opportunity for comprehensive genomic studies. It can be applied in veterinary science, bacteriology and virology, diagnostics of animal diseases, food safety, examinations of the composition of environmental samples, and even in veterinary vaccinology. Thus HTS a wide-ranging method that can be applied in different areas of the One Health approach. In particular, the whole genome sequencing (WGS) of bacteria is routinely used in food hygiene and outbreak investigations for phylogenetic analysis of pathogenic bacteria isolated from various sources across timeline, molecular characterisation of bacteria, plasmids, antibiotic resistance and identification of virulence factors. Metagenomics can be used to characterize the composition of microbiota in environmental samples. It makes it possible to obtain a taxonomic identification of bacteria, fungi or plants present in a metasample. It can also be used for the monitoring and epidemiological tracing of viruses, such as SARS-CoV-2. The transcriptomic approach makes it possible to study the expression of genes associated with various infections and diseases. HTS is a highly versatile method, but the selection of the proper application is crucial to obtain expected outcomes. The paper presents some HTS approaches and examples of research in veterinary science.


2013 ◽  
Vol 95 (2) ◽  
pp. 175-181 ◽  
Author(s):  
Jennifer J. Mosher ◽  
Erin L. Bernberg ◽  
Olga Shevchenko ◽  
Jinjun Kan ◽  
Louis A. Kaplan

Sign in / Sign up

Export Citation Format

Share Document