scholarly journals Computational search of hybrid human/SARS-CoV-2 dsRNA reveals unique viral sequences that diverge from those of other coronavirus strains

Heliyon ◽  
2021 ◽  
pp. e07284
Author(s):  
Claude Pasquier ◽  
Alain Robichon
2020 ◽  
Author(s):  
Claude Pasquier ◽  
Alain Robichon

AbstractThe role of the RNAi/Dicer/Ago system to degrade RNA viruses has been elusive in mammals, which prompted authors to think that interferon (IFN) synthesis is essential in this clade relegating the RNAi defense strategy against viral infection as accessory function. We explore the theoretical possibilities that RNAi triggered by SARS-CoV-2 might degrade some host transcripts in the opposite direction although this hypothesis seems counter intuitive. SARS-CoV-2 genome was therefore computational searched for exact intra pairing within the viral RNA and also hybrid exact pairing with human transcriptome over a minimum 20 bases length. Minimal segments of 20 bases length of SARS-CoV-2 RNA were found based on the theoretical matching with existing complementary strands in the human host transcriptome. Few human genes potentially annealing with SARS-CoV-2 RNA, among them mitochondrial deubiquitinase USP30, a subunit of ubiquitin protein ligase complex FBXO21 along with two long coding RNAs were retrieved. The hypothesis that viral originated RNAi might mediate degradation of messengers of the host transcriptome was corroborated by clinical observation and phylogenetic comparative analysis indicating a strong specificity of these hybrid pairing sequences for both SARS-CoV-2 and human genomes.


1995 ◽  
Vol 69 (10) ◽  
pp. 5935-5945 ◽  
Author(s):  
M Berebbi ◽  
C Cajean-Feroldi ◽  
F Apiou ◽  
J Couturier ◽  
M Garcette ◽  
...  

1998 ◽  
Vol 72 (5) ◽  
pp. 4537-4540 ◽  
Author(s):  
Alain Blanchard ◽  
Stéphane Ferris ◽  
Sophie Chamaret ◽  
Denise Guétard ◽  
Luc Montagnier

ABSTRACT We have investigated the molecular evidence in favor of the transmission of human immunodeficiency virus (HIV) from an HIV-infected surgeon to one of his patients. After PCR amplification, theenv and gag sequences from the viral genome were cloned and sequenced. Phylogenetic analysis revealed that the viral sequences derived from the surgeon and his patient are closely related, which strongly suggests that nosocomial transmission occurred. In addition, these viral sequences belong to group M of HIV type 1 but are divergent from the reference sequences of the known subtypes.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 574
Author(s):  
Evanthia Xylogianni ◽  
Paolo Margaria ◽  
Dennis Knierim ◽  
Kyriaki Sareli ◽  
Stephan Winter ◽  
...  

Field surveys were conducted in Greek olive orchards from 2017 to 2020 to collect information on the sanitary status of the trees. Using a high-throughput sequencing approach, viral sequences were identified in total RNA extracts from several trees and assembled to reconstruct the complete genomes of two isolates of a new viral species of the genus Tepovirus (Betaflexiviridae), for which the name olive virus T (OlVT) is proposed. A reverse transcription–polymerase chain reaction assay was developed which detected OlVT in samples collected in olive growing regions in Central and Northern Greece, showing a virus prevalence of 4.4% in the olive trees screened. Sequences of amplified fragments from the movement–coat protein region of OlVT isolates varied from 75.64% to 99.35%. Three olive varieties (Koroneiki, Arbequina and Frantoio) were infected with OlVT via grafting to confirm a graft-transmissible agent, but virus infections remained latent. In addition, cucumber mosaic virus, olive leaf yellowing-associated virus and cherry leaf roll virus were identified.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
M. C. Zanella ◽  
S. Cordey ◽  
F. Laubscher ◽  
M. Docquier ◽  
G. Vieille ◽  
...  

Abstract Background Viral infections are common complications following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Allo-HSCT recipients with steroid-refractory/dependent graft-versus-host disease (GvHD) are highly immunosuppressed and are more vulnerable to infections with weakly pathogenic or commensal viruses. Here, twenty-five adult allo-HSCT recipients from 2016 to 2019 with acute or chronic steroid-refractory/dependent GvHD were enrolled in a prospective cohort at Geneva University Hospitals. We performed metagenomics next-generation sequencing (mNGS) analysis using a validated pipeline and de novo analysis on pooled routine plasma samples collected throughout the period of intensive steroid treatment or second-line GvHD therapy to identify weakly pathogenic, commensal, and unexpected viruses. Results Median duration of intensive immunosuppression was 5.1 months (IQR 5.5). GvHD-related mortality rate was 36%. mNGS analysis detected viral nucleotide sequences in 24/25 patients. Sequences of ≥ 3 distinct viruses were detected in 16/25 patients; Anelloviridae (24/25) and human pegivirus-1 (9/25) were the most prevalent. In 7 patients with fatal outcomes, viral sequences not assessed by routine investigations were identified with mNGS and confirmed by RT-PCR. These cases included Usutu virus (1), rubella virus (1 vaccine strain and 1 wild-type), novel human astrovirus (HAstV) MLB2 (1), classic HAstV (1), human polyomavirus 6 and 7 (2), cutavirus (1), and bufavirus (1). Conclusions Clinically unrecognized viral infections were identified in 28% of highly immunocompromised allo-HSCT recipients with steroid-refractory/dependent GvHD in consecutive samples. These identified viruses have all been previously described in humans, but have poorly understood clinical significance. Rubella virus identification raises the possibility of re-emergence from past infections or vaccinations, or re-infection.


Author(s):  
Manish C Choudhary ◽  
Charles R Crain ◽  
Xueting Qiu ◽  
William Hanage ◽  
Jonathan Z Li

Abstract Background Both SARS-CoV-2 reinfection and persistent infection have been reported, but sequence characteristics in these scenarios have not been described. We assessed published cases of SARS-CoV-2 reinfection and persistence, characterizing the hallmarks of reinfecting sequences and the rate of viral evolution in persistent infection. Methods A systematic review of PubMed was conducted to identify cases of SARS-CoV-2 reinfection and persistence with available sequences. Nucleotide and amino acid changes in the reinfecting sequence were compared to both the initial and contemporaneous community variants. Time-measured phylogenetic reconstruction was performed to compare intra-host viral evolution in persistent SARS-CoV-2 to community-driven evolution. Results Twenty reinfection and nine persistent infection cases were identified. Reports of reinfection cases spanned a broad distribution of ages, baseline health status, reinfection severity, and occurred as early as 1.5 months or >8 months after the initial infection. The reinfecting viral sequences had a median of 17.5 nucleotide changes with enrichment in the ORF8 and N genes. The number of changes did not differ by the severity of reinfection and reinfecting variants were similar to the contemporaneous sequences circulating in the community. Patients with persistent COVID-19 demonstrated more rapid accumulation of sequence changes than seen with community-driven evolution with continued evolution during convalescent plasma or monoclonal antibody treatment. Conclusions Reinfecting SARS-CoV-2 viral genomes largely mirror contemporaneous circulating sequences in that geographic region, while persistent COVID-19 has been largely described in immunosuppressed individuals and is associated with accelerated viral evolution.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 405
Author(s):  
Anna Matysiak ◽  
Michal Kabza ◽  
Justyna A. Karolak ◽  
Marcelina M. Jaworska ◽  
Malgorzata Rydzanicz ◽  
...  

The ocular microbiome composition has only been partially characterized. Here, we used RNA-sequencing (RNA-Seq) data to assess microbial diversity in human corneal tissue. Additionally, conjunctival swab samples were examined to characterize ocular surface microbiota. Short RNA-Seq reads, obtained from a previous transcriptome study of 50 corneal tissues, were mapped to the human reference genome GRCh38 to remove sequences of human origin. The unmapped reads were then used for taxonomic classification by comparing them with known bacterial, archaeal, and viral sequences from public databases. The components of microbial communities were identified and characterized using both conventional microbiology and polymerase chain reaction (PCR) techniques in 36 conjunctival swabs. The majority of ocular samples examined by conventional and molecular techniques showed very similar microbial taxonomic profiles, with most of the microorganisms being classified into Proteobacteria, Firmicutes, and Actinobacteria phyla. Only 50% of conjunctival samples exhibited bacterial growth. The PCR detection provided a broader overview of positive results for conjunctival materials. The RNA-Seq assessment revealed significant variability of the corneal microbial communities, including fastidious bacteria and viruses. The use of the combined techniques allowed for a comprehensive characterization of the eye microbiome’s elements, especially in aspects of microbiota diversity.


ACS Nano ◽  
2021 ◽  
Author(s):  
Komal Sethi ◽  
Gabrielle P. Dailey ◽  
Osama K. Zahid ◽  
Ethan W. Taylor ◽  
Jan A. Ruzicka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document