scholarly journals Role of membrane environment and membrane-spanning protein regions in assembly and function of the Class II Major Histocompatibility complex

2019 ◽  
Vol 80 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Ann M. Dixon ◽  
Syamal Roy
1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


1994 ◽  
Vol 179 (2) ◽  
pp. 681-694 ◽  
Author(s):  
E A Elliott ◽  
J R Drake ◽  
S Amigorena ◽  
J Elsemore ◽  
P Webster ◽  
...  

The major histocompatibility complex (MHC) class II-associated invariant chain (Ii) is thought to act as a chaperone that assists class II during folding, assembly, and transport. To define more precisely the role of Ii chain in regulating class II function, we have investigated in detail the biosynthesis, transport, and intracellular distribution of class II molecules in splenocytes from mice bearing a deletion of the Ii gene. As observed previously, the absence of Ii chain caused significant reduction in both class II-restricted antigen presentation and expression of class II molecules at the cell surface because of the intracellular accumulation of alpha and beta chains. Whereas much of the newly synthesized MHC molecules enter a high molecular weight aggregate characteristic of misfolded proteins, most of the alpha and beta chains form dimers and acquire epitopes characteristic of properly folded complexes. Although the complexes do not bind endogenously processed peptides, class II molecules that reach the surface are competent to bind peptides added to the medium, further demonstrating that at least some of the complexes fold properly. Similar to misfolded proteins, however, the alpha and beta chains are poorly terminally glycosylated, suggesting that they fail to reach the Golgi complex. As demonstrated by double label confocal and electron microscope immunocytochemistry, class II molecules were found in a subcompartment of the endoplasmic reticulum and in a population of small nonlysosomal vesicles possibly corresponding to the intermediate compartment or cis-Golgi network. Thus, although alpha and beta chains can fold and form dimers on their own, the absence of Ii chain causes them to be recognized as "misfolded" and retained in the same compartments as bona fide misfolded proteins.


Sign in / Sign up

Export Citation Format

Share Document