Neuromuscular Control Training Does Not Improve Gait Biomechanics in Those With Chronic Ankle Instability: A Critically Appraised Topic

2020 ◽  
Vol 25 (4) ◽  
pp. 165-169
Author(s):  
Kimmery Migel ◽  
Erik Wikstrom

Introduction/Clinical Scenario: Ankle sprains are highly common within the population and can lead to chronic ankle instability (CAI). Individuals with CAI have both functional and mechanical impairments, which are thought to contribute to maladaptive gait biomechanics. Neuromuscular control and balance training are frequently incorporated into rehabilitation programs, however the effect of balance training on gait biomechanics remains unknown. Focused Clinical Question: Does balance or neuromuscular training improve gait biomechanics in individuals with CAI? Summary of Key Findings: Three studies assessed 4–6 weeks of progressive neuromuscular control training and found no improvements in gait biomechanics. One study found a worsening of eversion position at midstance upon program completion. However, when training was augmented with destabilizing shoes, improvements in dorsiflexion were noted. Clinical Bottom Line: Cumulative findings suggest that neuromuscular control training does not improve gait biomechanics in those with CAI. However, augmentation of programs may be beneficial. Strength of Recommendation: There is high-quality evidence(Grade B) that balance training does not alter gait biomechanics in patients with CAI.

2020 ◽  
Vol 29 (3) ◽  
pp. 373-376
Author(s):  
Kimmery Migel ◽  
Erik Wikstrom

Clinical Scenario: Approximately 30% of all first-time patients with LAS develop chronic ankle instability (CAI). CAI-associated impairments are thought to contribute to aberrant gait biomechanics, which increase the risk of subsequent ankle sprains and the development of posttraumatic osteoarthritis. Alternative modalities should be considered to improve gait biomechanics as impairment-based rehabilitation does not impact gait. Taping and bracing have been shown to reduce the risk of recurrent ankle sprains; however, their effects on CAI-associated gait biomechanics remain unknown. Clinical Question: Do ankle taping and bracing modify gait biomechanics in those with CAI? Summary of Key Findings: Three case-control studies assessed taping and bracing applications including kinesiotape, athletic tape, a flexible brace, and a semirigid brace. Kinesiotape decreased excessive inversion in early stance, whereas athletic taping decreased excessive inversion and plantar flexion in the swing phase and limited tibial external rotation in terminal stance. The flexible and semirigid brace increased dorsiflexion range of motion, and the semirigid brace limited plantar flexion range of motion at toe-off. Clinical Bottom Line: Taping and bracing acutely alter gait biomechanics in those with CAI. Strength of Recommendation: There is limited quality evidence (grade B) that taping and bracing can immediately alter gait biomechanics in patients with CAI.


2013 ◽  
Vol 29 (6) ◽  
pp. 696-704 ◽  
Author(s):  
Pascal David ◽  
Mohamad Halimi ◽  
Isabelle Mora ◽  
Pierre-Louis Doutrellot ◽  
Michel Petitjean

Ankle sprains are among the most common sport-related injuries and can lead to chronic ankle instability. Impaired sensorimotor function of the ankle musculature is often suggested as a cause. The current study sought to assess and compare the isokinetic performance and electromyographic patterns of evertor and invertor muscles in patients with chronic ankle instability and in a control group. Twelve patients with chronic ankle instability and twelve healthy subjects were included. Isokinetic eccentric and concentric testing at various angular velocities was performed for eversion and inversion movements. The corresponding myoelectric activities of the fibularis longus and tibialis anterior muscles were quantified from surface electromyographic recordings by computing average root mean square values. Patients had lower myoelectric activity of the evertor and invertor muscles than controls did; this difference could account for the eccentric weakness associated with ankle instability. Functional strength ratios revealed a dynamic strength imbalance in unstable ankle patients and that may contribute to recurrent injury. Our findings suggest that rehabilitation programs for unstable ankle patients must be focused on the motor control of eccentric contractions of the ankle evertors and invertors, to boost these muscles’ contribution to ankle stabilization.


BMJ Open ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. e053755
Author(s):  
Ju Wang ◽  
Di Zhang ◽  
Tianyu Zhao ◽  
Jiang Ma ◽  
Song Jin

IntroductionLateral ankle sprains are one of the most common musculoskeletal injuries. Up to 70% of individuals who sustain lateral ankle sprains develop chronic ankle instability (CAI). Balance training has been used in patients with CAI, but the evidence for its efficacy is inconsistent. This systematic review and meta-analysis aims to determine the short-term (end of the treatment period) and long-term (6 months after treatment) effectiveness of balance training for patients with CAI.Methods and analysisWe will search PubMed, EMBASE, the Cochrane Library, Ovid, EBSCO-host, Pedro, ClinicalKey, ScienceDirect, Springer, China National Knowledge Infrastructure, Technology Periodical Database (VIP), WanFang Data and China Biology Medicine for reports of randomised trials of balance training in patients with CAI, from inception to 1 October 2021. The language will be restricted to English and Chinese, and articles will be screened and collected by two reviewers independently. Dynamic balance and functional ankle instability are the primary outcomes of this study. Secondary outcomes include pain, ankle range of motion, ankle strength and health-related quality of life. Review Manager V.5.3 software will be used for meta-analysis, and stratification analysis will be conducted for study quality according to the Jadad score. Subgroup and sensitivity analyses will be conducted. Grading of Recommendations, Assessment, Development and Evaluation will be used to assess confidence in the cumulative evidence. The protocol follows the Cochrane Handbook for Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols guidelines.Ethics and disseminationEthical approval is not required for literature-based studies. The results will be disseminated through peer-reviewed publications.


2007 ◽  
Vol 97 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Douglas H. Richie

Chronic instability of the ankle can be the result of mechanical and functional deficits. An acute ankle sprain can cause mechanical and functional instability, which may or may not respond to standard rehabilitation programs. Chronic instability results when there is persistent joint laxity of the ankle or when one or more components of neuromuscular control of the ankle are compromised. A loss of balance or postural control seems to be the most consistent finding among athletes with chronic instability of the ankle. Recent research in patients with acute and chronic ankle instability has revealed positive effects of foot orthoses on postural control. This article reviews the current research relevant to the use of foot orthoses in patients with chronic ankle instability and clarifies the suggested benefits and the shortcomings of these investigations. (J Am Podiatr Med Assoc 97(1): 19–30, 2007)


2019 ◽  
Vol 28 (2) ◽  
pp. 205-210
Author(s):  
Bradley C. Jackson ◽  
Robert T. Medina ◽  
Stephanie H. Clines ◽  
Julie M. Cavallario ◽  
Matthew C. Hoch

Clinical Scenario: History of acute ankle sprains can result in chronic ankle instability (CAI). Arthrokinematic changes resulting from CAI may restrict range of motion and contribute to postural control deficits. Mulligan or fibular reposition taping (FRT) has been suggested as a means to realign fibular positional faults and may be an effective way to improve postural control and balance in patients with CAI. Clinical Question: Is there evidence to suggest that FRT will improve postural control for patients with CAI in the affected limb compared with no taping? Summary of Key Findings: Three of the 4 included studies found no significant difference in postural control in patients receiving FRT compared with sham or no tape. Clinical Bottom Line: There is moderate evidence refuting the use of FRT to improve postural control in patients with CAI. Strength of Recommendation: There is grade B evidence to support that FRT does not improve postural control in people with CAI.


2008 ◽  
Vol 43 (3) ◽  
pp. 305-315 ◽  
Author(s):  
Patrick O. McKeon ◽  
Jay Hertel

Abstract Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.


Author(s):  
Kyung-Min Kim ◽  
María D. Estudillo-Martínez ◽  
Yolanda Castellote-Caballero ◽  
Alejandro Estepa-Gallego ◽  
David Cruz-Díaz

Chronic Ankle Instability (CAI) is one of the most common musculoskeletal dysfunctions. Stroboscopic vision (SV) training has been deemed to enhance somatosensorial pathways in this population group; nevertheless, until recently no studies have addressed the additional effects of this treatment option to the traditional therapeutic approach. Methods: To evaluate the effectiveness of a partial visual deprivation training protocol in patients with CAI, a randomized controlled trial was carried out. Patients with CAI (n = 73) were randomized into either a balance training, SV training, or a control (no training) group. For participants assigned into training groups, they received 18 training sessions over 6 weeks. The primary outcome was dynamic balance as measured by the Star Excursion Balance Test assessed at baseline and after 6 weeks of intervention. Secondary outcome measures included ankle dorsiflexion range of motion, self-reported instability feeling, and ankle functional status. Results: Better scores in stroboscopic training and balance training groups in all outcome measures were observed in comparison with the control group with moderate to large effect sizes. Stroboscopic training was more effective than neuromuscular training in self-reported instability feeling (cohen’s d = 0.71; p = 0.042) and anterior reach distance of the star excursion balance test (cohen’s d = 1.23; p = 0.001). Conclusions: Preliminary findings from the effects of SV Stroboscopic training in patients with CAI, suggest that SV may be beneficial in CAI rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document