Cortactin expression in non-Hodgkin B-cell lymphomas: a new marker for the differential diagnosis between chronic lymphocytic leukemia and mantle cell lymphoma

2019 ◽  
Vol 85 ◽  
pp. 251-259 ◽  
Author(s):  
Marco Pizzi ◽  
Livio Trentin ◽  
Andrea Visentin ◽  
Deborah Saraggi ◽  
Veronica Martini ◽  
...  
2009 ◽  
Vol 33 (9) ◽  
pp. 1212-1216 ◽  
Author(s):  
Giuseppe A. Palumbo ◽  
Nunziatina Parrinello ◽  
Giovannella Fargione ◽  
Katia Cardillo ◽  
Annalisa Chiarenza ◽  
...  

2010 ◽  
Vol 34 (9) ◽  
pp. 1235-1238 ◽  
Author(s):  
Dragan Jevremovic ◽  
Roxana S. Dronca ◽  
William G. Morice ◽  
Ellen D. McPhail ◽  
Paul J. Kurtin ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 536-536
Author(s):  
Anna M Halldorsdottir ◽  
Meena Kanduri ◽  
Millaray Marincevic ◽  
Hanna Göransson ◽  
Anders Isaksson ◽  
...  

Abstract Abstract 536 Introduction: Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) are B-cell malignancies of different postulated origin, genetics, clinical presentation and prognosis. Several studies have reported that both MCL and CLL individually exhibit aberrant methylation in comparison to normal B-cells. However, a comprehensive comparison of the methylation profiles of these two B-cell disorders has not been performed yet. This strategy has the potential to identify cellular pathways and genes that are specifically targeted in each disease. Methods: We applied the genome-wide Illumina Infinium HumanMethylation27 BeadChip array (Illumina, San Diego, USA) which measures methylation levels at 27,578 CpG dinucleotides covering 14,495 genes, to compare the methylation profiles in: (i) 20 MCL cases; and, (ii) 30 CLL cases, 15 each with unmutated stereotyped subset #1 (IGHV1-5-7/IGKV1(D)-39) B cell receptors (BCRs) or mutated stereotyped subset #4 (IGHV4-34/IGKV2-30) BCRs, where these two subsets represent prototypes of unmutated and mutated CLL. The methylation status for each detected CpG site ranged between 0.1 (completely unmethylated) to 1 (completely methylated). Results: As expected, major differences in methylation patterns between MCL and CLL were observed. When the methylation profiles of the two entities were compared, 51 genes were identified as differentially methylated in all comparisons (MCL versus both CLL subsets combined and each subset separately). Among the 19 genes highly methylated in MCL were six (32%) homeobox or homeodomain-containing transcription factors (e.g. POU4F1, PITX3), whereas genes enhancing cell proliferation and tumor progression such as MERTK and CAMP were hypomethylated in MCL. Of the 32 genes hypermethylated in CLL were six pro-apoptotic genes, including DYRK2 and CYFIP2, the tumor suppressor PRDM2 and the cell cycle regulator CCND1. Conclusions: We report for the first time disease-biased methylation profiles for different functional classes of genes in MCL or CLL. Homeobox genes were highly methylated in MCL, whereas CLL was characterized by methylation of apoptosis-related genes. The identified differences in global methylation profiles between MCL and CLL may assist in unfolding distinct epigenetic silencing mechanisms involved in the pathogenesis of these B-cell malignancies. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S127-S127
Author(s):  
K M Erickson ◽  
D Lynch

Abstract Casestudy: Chronic lymphocytic leukemia (CLL) accounts for about 30% of all lymphoid neoplasms and is the most common adult blood cancer in the Western world. Mantle cell lymphoma (MCL) accounts for only about 6% of all B-cell lymphomas in Western countries. MCL and CLL are both CD5 positive B-cell lymphoproliferative disorders. It is necessary to distinguish these two entities as MCL is a more aggressive disease, and requires specific treatment. MCL and CLL can occur in one patient at the same time and is often termed a composite lymphoma. We present an 84-year-old female with a history of endometrial cancer who was found to have splenomegaly and lymphadenopathy. Flow cytometry was performed upon her peripheral blood specimen which demonstrated two distinct populations of abnormal light chain restricted B-cell populations. One population demonstrated kappa light chain restriction and was positive for CD45, CD19, CD20, CD5, CD38, FMC-7, and CD22, representing MCL. The other population showed dim lambda light chain restriction that was also positive for CD45, CD19, dim CD20, CD5, and CD23, representing CLL. FISH studies demonstrated t(11;14), and four common deletions or chromosome aneuploidy associated with CLL. These findings confirmed the dual populations of CLL and MCL. This is an interesting case because it is a very rare combination with only a few cases having been reported with two distinct cell populations in one patient at the same time.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5637-5637 ◽  
Author(s):  
Martin Spacek ◽  
Josef Karban ◽  
Martin Radek ◽  
Eva Babunkova ◽  
Jan Kvasnicka ◽  
...  

Abstract Background Chronic lymphocytic leukemia (CLL) in most patients is diagnosed with early stage disease identified incidentally on blood counts obtained for unrelated purposes. Immunophenotyping of peripheral blood (PB) is required for the diagnosis of CLL. A scoring system that helps in the differential diagnosis between CLL and other mature B-cell neoplasms (MBN) has been described twenty years ago (Matutes et al., Leukemia 1994; modified by Moreau et al., Am J Clin Pathol 1997). CLL/SLL typically demonstrates low-intensity staining for surface immunoglobulin, low or absent expression of CD22, CD79b and FMC7 and moderate to strong expression of CD5 and CD23. However, this phenotype is not entirely specific and some overlap in immunophenotype exists between CLL and non-CLL MBN. In particular, leukemic phase of CD5 positive mantle cell lymphoma (MCL) can be misdiagnosed as CLL. Recently, it has been shown that CD200 expression may help in differential diagnosis between CLL and other MBN. The present study aimed to prove CD200 usefulness in differentiating CLL from MCL on a series of consecutive patients and to investigate whether adding CD200 could improve the utility of Matutes scoring system, especially in atypical CLL. Methods Between January 2013 and March 2014, PB of consecutive patients with MBN was assessed in this study. Analysis was performed on a FACSCalibur flow cytometer (Becton Dickinson) and samples were stained with panels of 4-color combinations of antibodies using a standard whole-blood assay. PB specimens were incubated with antibodies purchased from eBioscience (CD200 APC, clone OX-104), Immunotech (CD23, CD79b, FMC7), BD Biosciences (CD5, CD19), and DAKO (sIg). At least 5,000 B-cells were immediately acquired on flow cytometer. Diagnosis of CLL was made according to National Cancer Institute-Working Group criteria. Furthermore, tissue biopsies of 62 (31%) CLL cases were available for histological review, including all cases of atypical CLL. Diagnosis of MCL was based on morphology and immunohistochemical detection of cyclin D1 in tissue biopsies and further confirmed by detection of t(11;14) by FISH in selected cases. Results Table 1 provides details of the patient characteristics. In our series, CD200 was present on neoplastic B-cells of all 200 CLL cases (100%), whereas only 4 cases (8.7%) of MCL showed dim positivity of CD200. The remaining 42 cases (91.3%) of MCL were negative for CD200 expression. The revised Matutes score was calculated to classify CLL cases. All 179 cases of typical CLL (defined by a score ≥ 4) presented moderate to strong expression of CD200 (Median fluorescence intensity - MFI: median = 161). CD200 was also positive in all 21 cases of atypical CLL (defined by a score < 4), but showed lower intensity (MFI: median 128) than that observed in typical CLL (P = 0.02). Application of the Matutes scoring system to MCL cases showed that three cases scored 3 (6.5%), two cases scored 4 (4.3%) and none scored 5. Of note, CD200 was absent in two cases scoring 3 and was only dimly expressed in the remaining MCL cases scoring 3 or 4. Thus, the differential expression of CD200 in CLL and MCL retained even in those cases with otherwise indeterminate immunophenotype, therefore being particularly helpful for the distinction of atypical CLL and MCL. Conclusions Flow cytometry is an essential tool for the diagnosis of CLL. However, a significant immunophenotypic overlapping occurs especially between CLL and MCL cells. In this study, we investigated the expression of recently identified marker CD200 in PB of consecutive CLL and MCL patients. We have confirmed previous reports that CD200 is consistently expressed in all typical CLL. Furthermore, CD200 was expressed by all immunophenotypically atypical CLL cases. On the contrary, in MCL patients CD200 showed only a dim positivity in four subjects and was absent in the remaining 42. The inclusion of CD200 in the MBN routine flow cytometry panels facilitates the differential diagnosis between CLL and MCL and has a great impact on accurate diagnosis in cases with immunophenotypic aberrancies. This work was supported by grant RVO VFN64165 and PRVOUK P27/LF1/1 Table 1 MCL (46 pts.) CLL (200 pts.) Age (median, range) 66.7; 47.8-82.4 67.6; 32.2-90.7 Sex (F/M) 19/27 74/126 WBC x109/L (median, range) 10; 2.1-285.4 21.9; 2.8-375.2 % neoplastic B-cells of WBC (median, range) 17.1; 1.3-90.5 54; 1.7-94.7 CD200 MFI (median, range) 2.16; 1-53.2 147.5; 20.6-637 Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 35 (2) ◽  
pp. 94-98 ◽  
Author(s):  
Mesude Falay ◽  
Berna Afacan Öztürk ◽  
Kürşad Güneş ◽  
Yasin Kalpakçı ◽  
Simten Dağdaş ◽  
...  

2005 ◽  
Vol 123 (5) ◽  
pp. 646-650 ◽  
Author(s):  
Gema Pérez-Chacón ◽  
Beatriz Contreras-Martín ◽  
Sandra Cuní ◽  
Silvia Rosado ◽  
Trinidad Martín-Donaire ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (25) ◽  
pp. 6145-6154 ◽  
Author(s):  
Sally Arai ◽  
Bita Sahaf ◽  
Balasubramanian Narasimhan ◽  
George L. Chen ◽  
Carol D. Jones ◽  
...  

Abstract B cells are involved in the pathogenesis of chronic GVHD (cGVHD). We hypothesized that prophylactic anti–B-cell therapy delivered 2 months after transplantation would decrease allogeneic donor B-cell immunity and possibly the incidence of cGVHD. Therefore, in the present study, patients with high-risk chronic lymphocytic leukemia (n = 22) and mantle-cell lymphoma (n = 13) received a total lymphoid irradiation of 80 cGy for 10 days and antithymocyte globulin 1.5 mg/kg/d for 5 days. Rituximab (375 mg/m2) was infused weekly on days 56, 63, 70, and 77 after transplantation. The incidence of acute GVHD was 6%. The cumulative incidence of cGVHD was 20%. Nonrelapse mortality was 3%. Rituximab treatment after allogeneic transplantation significantly reduced B-cell allogeneic immunity, with complete prevention of alloreactive H-Y Ab development in male patients with female donors (P = .01). Overall survival and freedom from progression at 4 years for chronic lymphocytic leukemia patients were 73% and 47%, respectively; for mantle-cell lymphoma patients, they were 69% and 53%, respectively. This study is registered at www.clinicaltrials.gov as NCT00186628.


Sign in / Sign up

Export Citation Format

Share Document