scholarly journals Enhancing rare-earth recovery from lamp phosphor waste

2019 ◽  
Vol 187 ◽  
pp. 38-44 ◽  
Author(s):  
Lourdes Yurramendi ◽  
Lukas Gijsemans ◽  
Federica Forte ◽  
Jose Luis Aldana ◽  
Carmen del Río ◽  
...  
Keyword(s):  
2015 ◽  
Vol 17 (2) ◽  
pp. 856-868 ◽  
Author(s):  
David Dupont ◽  
Koen Binnemans

A recycling process for lamp phosphor waste has been developed based on the selective dissolution and revalorization of the valuable red lamp phosphor Y2O3:Eu3+ in the functionalized ionic liquid [Hbet][Tf2N].


2018 ◽  
Vol 15 (3) ◽  
Author(s):  
Parul Johar ◽  
Vishal Jangir ◽  
Yogita Choudhary ◽  
Sudhanshu Mallick

Modern fluorescent lamp phosphor powder contains tricolor phosphor. This tricolor phosphor consists of three different types of rare earth phosphors: red (YOX), green (CMAT/LAP) and blue (BAM); mixed in varying proportions. The exact separation of these three rare earth phosphors is essential in order to precisely recover the contained rare earth elements from waste lamps phosphor. In this present work, we reported an efficient methodology for the separation of these three tricolor phosphors and the selective extraction of predominantly presented red phosphor (YOX) constituents using acid leaching. The waste phosphor powder was leached with different acids: both organic and inorganic type. The 3 M H2SO4 leaching was found to be most suitable for the selective extraction of red phosphor constituents, i.e. Y and Eu. The recovered phosphor powder was analyzed with SEM/EDS and XRD analysis. The obtained XRD pattern was refined using Rietveld refinement method for the quantification of phases present. Recovered red phosphor powder contained three main crystalline phases Y2O3, Eu2O3 and Y2OS2. KEYWORDS: Waste Lamp Phosphor; Tricolor Phosphor; Rare Earth Elements; Acid Leaching


ChemInform ◽  
2010 ◽  
Vol 23 (30) ◽  
pp. no-no
Author(s):  
P. MAESTRO ◽  
D. HUGUENIN ◽  
A. SEIGNEURIN ◽  
F. DENEUVE ◽  
P. LE LANN ◽  
...  

1992 ◽  
Vol 139 (5) ◽  
pp. 1479-1482 ◽  
Author(s):  
P. Maestro ◽  
D. Huguenin ◽  
A. Seigneurin ◽  
F. Deneuve ◽  
P. Le Lann ◽  
...  

2016 ◽  
Vol 163 ◽  
pp. 99-103 ◽  
Author(s):  
Yong Liang ◽  
Yuanxin Liu ◽  
Rudan Lin ◽  
Doudou Guo ◽  
Chunfa Liao

Author(s):  
N. M. P. Low ◽  
L. E. Brosselard

There has been considerable interest over the past several years in materials capable of converting infrared radiation to visible light by means of sequential excitation in two or more steps. Several rare-earth trifluorides (LaF3, YF3, GdF3, and LuF3) containing a small amount of other trivalent rare-earth ions (Yb3+ and Er3+, or Ho3+, or Tm3+) have been found to exhibit such phenomenon. The methods of preparation of these rare-earth fluorides in the crystalline solid form generally involve a co-precipitation process and a subsequent solid state reaction at elevated temperatures. This investigation was undertaken to examine the morphological features of both the precipitated and the thermally treated fluoride powders by both transmission and scanning electron microscopy.Rare-earth oxides of stoichiometric composition were dissolved in nitric acid and the mixed rare-earth fluoride was then coprecipitated out as fine granules by the addition of excess hydrofluoric acid. The precipitated rare-earth fluorides were washed with water, separated from the aqueous solution, and oven-dried.


Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.


1952 ◽  
Vol 44 (3) ◽  
pp. 442-442
Author(s):  
Frank Spedding ◽  
Harley Wilhelm ◽  
Wayne Keller et al
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document