Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site

2011 ◽  
Vol 65 (6) ◽  
pp. 827-831 ◽  
Author(s):  
Nancy Pino ◽  
Gustavo Peñuela
2019 ◽  
Vol 19 (2) ◽  
pp. 347 ◽  
Author(s):  
Abubakar Tuhuloula ◽  
Suprapto Suprapto ◽  
Ali Altway ◽  
Sri Rachmania Juliastuti

Contamination of soil by the activities of exploration, production, and disposal of oil waste into the environment causes serious damage to the environmental ecosystem, the target of processing by the bacteria as a model for remediation of oil contaminated site. Thus, the study was focused on determining the biodegradation percentage of extractable petroleum hydrocarbons as a function of the oil concentration. This research was conducted in a slurry bioreactor with mixed contaminated soil to water ratio of 20:80 (wt.%). A consortium of Bacillus cereus and Pseudomonas putida bacteria 10% (v/v) and 15% (v/v) with the ratio of 2:3, 1:1, and 3:2 was inserted into the slurry bioreactor and a single reactor was used as a control. The result of identification with an initial concentration of extractable petroleum hydrocarbons of 299.53 ng/µL, after 49 days of incubation for bacterial consortium 10% (v/v), the concentration was reduced to 85.31; 32.43; 59.74; and 112.22 ng/µL respectively and the biodegradation percentage was 71.5; 89.17; 80.05; and 62.54%. As for the bacterial consortium concentration of 15% (v/v) with the same ratio and control, the effluent concentration was 12.48; 7.72; 18.93 ng/µL, respectively or the biodegradation percentage was 95.83; 97.42; 93.68%.


2011 ◽  
Vol 22 (6) ◽  
pp. 1203-1213 ◽  
Author(s):  
Gustavo Yáñez-Ocampo ◽  
Enrique Sánchez-Salinas ◽  
M. Laura Ortiz-Hernández

2021 ◽  
Author(s):  
Michael O Eze ◽  
Volker Thiel ◽  
Grant C Hose ◽  
Simon C George ◽  
Rolf Daniel

The slow rate of natural attenuation of organic pollutants, together with unwanted environmental impacts of traditional remediation strategies, has necessitated the exploration of plant-microbe systems for enhanced bioremediation applications. The identification of microorganisms capable of promoting both plant growth and hydrocarbon degradation is crucial to the success of plant-based remediation techniques. Through successive enrichments of a soil sample from a historic oil-contaminated site in Wietze, Germany, we isolated a plant growth-promoting and hydrocarbon-degrading bacterial consortium. Metagenome analysis of the consortium led to the identification of genes and taxa putatively associated with these processes. The majority of the coding DNA sequences involved in these reactions were affiliated to Acidocella aminolytica and Acidobacterium capsulatum. In microcosm experiments performed in association with Medicago sativa L., the consortium achieved 91% rhizodegradation of diesel fuel hydrocarbons within 60 days, indicating its potential for biotechnological applications in the remediation of sites contaminated by organic pollutants.


Author(s):  
G. C. Iheanacho ◽  
A. A. Ibiene ◽  
P. O. Okerentugba

Discharge of poorly treated refinery wastewater has always been a major environmental challenge. Bacterial immobilization is key to the maintenance of biomass on a contaminated site. In this study, a mixed culture of three bacterial isolates from oil-polluted water: Pseudomonas aeruginosa (MN294989), Bacillus tequilensis (MN294990) and Micrococcus sp. immobilized on Groundnut Shell (GS), Melon Husk (MH) and Sugarcane Bagasse (SB) were employed in the bioremediation of Port Harcourt refinery wastewater. Surface area and pore size distribution of the agro-based bio carriers were suitable for bacteria adhesion. The bacterial isolates were screened for phenol, naphthalene and hydrocarbon utilization. Scanning Electron Microscopy (SEM) was used to ascertain the immobilization of the consortium on the agro-base carriers. A 15-days laboratory-scale treatment of refinery raw wastewater was compared in the immobilised and immobilized consortium. The agro-based residue immobilized consortium enhanced the reduction in BOD5, COD, oil and grease, phenol by 7%, 9%, 30% and 5% respectively compared to the free form of the consortium. This study underscores the role of immobilization in maintaining high bacterial biomass on contaminated site and possible improvement in bioremediation of refinery wastewater.


Sign in / Sign up

Export Citation Format

Share Document