scholarly journals Biodegradation of Extractable Petroleum Hydrocarbons by Consortia Bacillus cereus and Pseudomonas putida in Petroleum Contaminated-Soil

2019 ◽  
Vol 19 (2) ◽  
pp. 347 ◽  
Author(s):  
Abubakar Tuhuloula ◽  
Suprapto Suprapto ◽  
Ali Altway ◽  
Sri Rachmania Juliastuti

Contamination of soil by the activities of exploration, production, and disposal of oil waste into the environment causes serious damage to the environmental ecosystem, the target of processing by the bacteria as a model for remediation of oil contaminated site. Thus, the study was focused on determining the biodegradation percentage of extractable petroleum hydrocarbons as a function of the oil concentration. This research was conducted in a slurry bioreactor with mixed contaminated soil to water ratio of 20:80 (wt.%). A consortium of Bacillus cereus and Pseudomonas putida bacteria 10% (v/v) and 15% (v/v) with the ratio of 2:3, 1:1, and 3:2 was inserted into the slurry bioreactor and a single reactor was used as a control. The result of identification with an initial concentration of extractable petroleum hydrocarbons of 299.53 ng/µL, after 49 days of incubation for bacterial consortium 10% (v/v), the concentration was reduced to 85.31; 32.43; 59.74; and 112.22 ng/µL respectively and the biodegradation percentage was 71.5; 89.17; 80.05; and 62.54%. As for the bacterial consortium concentration of 15% (v/v) with the same ratio and control, the effluent concentration was 12.48; 7.72; 18.93 ng/µL, respectively or the biodegradation percentage was 95.83; 97.42; 93.68%.

2017 ◽  
Vol 6 (2) ◽  
pp. 168-174
Author(s):  
Abubakar Tuhuloula ◽  
Ali Altway ◽  
Sri Rachmania Juliastuti ◽  
Suprapto Suprapto

Pollution by chrysene compounds in the polluted soil of petroleum, due to exploration activities, production and disposal of petroleum waste into the environment causing serious damage to the ecosystem environment, became the target of processing with bacteria as a model of remediation of pollution sites. Thus, the study focused on the use of a bacterial consortium to degrade chrysene in petroleum-contaminated soil. The study was conducted by mixing 20:80 (% wt) of contaminated soil with water. The consortium of Bacillus cereus and Pseudomonas putida 10%(v/v) and 15%(v/v) bacteria with ratios; 2:3; 1:1; 3:2 is inserted into the slurry bioreactor. Biodegradation process is run with agitation of 100 rpm and temperature 26<sup>o</sup>C 30<sup>o</sup>C and in aeration. Identification of chrysene using gas chromatographymass spectrometry (GCMS) and bacterial populations with haemycitometer. The initial concentration of chrysene is 24.48 ng/?L. After 49 days remediation period for a 10% (v/v) reduced chrysene bacteria consortium and bacterial populations were 8.68 ng/?L; 7.56 ng/?L; and 8.07 ng/?L; with biodegradation rate is 67.01%; 69.10%; And 64.54%. As for the 15% (v/v) bacteria consortium with the same ratio, chrysene was degraded to 2.60 ng/?L; 1.57 ng/?L; and 2.02 ng/?L and the measured chrysene biodegradation rate was 89.39%; 93.58%; And 91.73%. These findings suggest that the percentage of low crude oil is degraded because of the increasing concentration of crude oil.


2021 ◽  
Author(s):  
Dalel Daâssi ◽  
Fatimah Qabil Almaghribi

Abstract The aim of this work was to isolate indigenous PAH degrading-fungi from petroleum contaminated soil and exogenous ligninolytic strains from decaying-wood, with the ability to secrete diverse enzyme activity. A total of ten ligninolytic fungal isolates and two native strains, has been successfully isolated, screened and identified. The phylogenetic analysis revealed that the indigenous fungi (KBR1 and KB8) belong to the genus Aspergillus niger and tubingensis. While the ligninolytic exogenous PAH-degrading strains namely KBR1-1, KB4, KB2 and LB3 were affiliated to different genera like Syncephalastrum sp, Paecilomyces formosus, Fusarium chlamydosporum, and Coniochaeta sp., respectively. Basis on the taxonomic analysis, enzymatic activities and the hydrocarbons removal rates, single fungal culture employing the strain LB3, KB4, KBR1 and the mixed culture (LB3+KB4) were selected to be used in soil microcosms treatments. The Total petroleum hydrocarbons (TPH), fungal growth rates, BOD5/COD ratios and GC-MS analysis, were determined in all soil microcosmos treatments (SMT) and compared with those of the control (SMU). After 60 days of culture incubation, the highest rate of TPH degradation was recorded in SMT[KB4] by approximately 92±2.35% followed by SMT[KBR1] then SMT[LB3+KB4] with 86.66±1.83% and 85.14±2.21%, respectively.


2020 ◽  
Vol 7 (2) ◽  
pp. 127-133
Author(s):  
Yalda Basim ◽  
Ghasemali Mohebali ◽  
Sahand Jorfi ◽  
Ramin Nabizadeh ◽  
Mehdi Ahmadi Moghadam ◽  
...  

Background: Biodegradation of hydrocarbon compounds is a great environmental concern due to their toxic nature and ubiquitous occurrence. In this study, biodegradation potential of oily soils was investigated in an oil field using indigenous bacterial consortium. Methods: The bacterial strains present in the contaminated and non-contaminated soils were identified via DNA extraction using 16S rDNA gene sequencing during six months. Furthermore, total petroleum hydrocarbons (TPH) were removed from oil-contaminated soils. The TPH values were determined using a gas chromatograph equipped with a flame ionization detector (GC-FID). Results: The bacterial consortium identified in oil-contaminated soils (case) belonged to the families Halomonadaceae (91.5%) and Bacillaceae (8.5%), which was significantly different from those identified in non-contaminated soils (control) belonging to the families Enterobacteriaceae (84.6%), Paenibacillaceae (6%), and Bacillaceae (9.4%). It was revealed that the diversity of bacterial strains was less in oil-contaminated soils and varied significantly between case and control samples. Indigenous bacterial consortium was used in oil-contaminated soils without need for amplification of heterogeneous bacteria and the results showed that the identified bacterial strains could be introduced as a sufficient consortium for biodegradation of oil-contaminated soils with similar texture, which is one of the innovative aspects of this research. Conclusion: An oil-contaminated soil sample with TPH concentration of 1640 mg/kg was subjected to bioremediation during 6 months using indigenous bacterial consortium and a TPH removal efficiency of 28.1% was obtained.


2020 ◽  
Vol 26 (5) ◽  
pp. 200384-0
Author(s):  
Jianbo Liu ◽  
Liming Xu ◽  
Feifei Zhu ◽  
Shouhao Jia

It has been proven that surfactants used in the remediation of petroleum hydrocarbon contaminated soil have great application potential. In this study, the effects of five surfactants (SDBS, Tween80, Tween60, rhamnolipid and TRS-1) on leaching of petroleum hydrocarbons from soil were investigated through orthogonal experiments, and petroleum hydrocarbon components were analyzed by GC/MS. The effects of surfactants on the degradation of petroleum hydrocarbon were analyzed by the changes of microbial growth curve and surface hydrophobicity. The results showed that surfactant type, temperature and surfactant concentration had significant effects on the removal rate of petroleum hydrocarbon. Tween80, rhamnolipid and TRS-1 have good bio-friendliness and a high removal rate of petroleum hydrocarbons (up to 65%), suitable for the restoration of the soil used in the experiment And Surfactants exhibited a higher removal rate for small molecules and petroleum hydrocarbons with odd carbon atoms. Surfactants have a certain modification effect on the surface of relatively hydrophilic bacteria under the initial conditions, making their surface properties develop in the direction of enhanced hydrophobicity, and the hydrophobicity has increased from less than 20% to about 40%.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 377-384 ◽  
Author(s):  
M. Gallegos Martínez ◽  
A. Gómez Santos ◽  
L. González Cruz ◽  
M.A. Montes de Oca García ◽  
L. Yáñez Trujillo ◽  
...  

A multidisciplinary three-step methodology is being developed to diagnose the extent and type of petroleum pollutants and resulting technological approaches to restore a contaminated site. At first, the site was delimitated and its zones identified by using remote sensors. An area of 307 ha considered of major importance to the national Mexican oil company, Petróleos Mexicanos (PEMEX), was identified. 75% of total analyzed soil samples ranged between 10-50,000 ppm of total petroleum hydrocarbons (TPH) and 25% between 50,000 and 434,000 ppm. Aliphatic and asphaltene groups were predominant and technological alternatives were proposed. In a second phase the identification of native botanical and microbial capabilities to biodegrade pollutants was achieved. Three native botanical species were selected for greenhouse studies: Cyperus laxus showed low sensitivity to TPH resulting in higher seed germination efficiency and growth rate. Since microbial consortia isolated from C. laxus rhizosphere were able todegrade up to 70% of TPH in 30 days laboratory cultures, a phytoremediation-reforest alternative was finally proposed to PEMEX. In a third step, the construction of a pilot plant in situ is now in course wherein both treatability studies and reforest strategies are being developed.


Author(s):  
Wei Zhang ◽  
Yun-guo Liu ◽  
Xiao-fei Tan ◽  
Guang-ming Zeng ◽  
Ji-lai Gong ◽  
...  

Soil contamination with petroleum hydrocarbons and heavy metals is a widespread environmental problem. In recent years, cyclodextrin has attracted research interest because of its special hole structure that can form inclusion complexes with certain small molecules. However, the solubility of β-cyclodextrin (β-CD) in water is low and it crystallizes easily, leading to its low utilization in practice. In this experiment, we connected β-CD with glycine under alkaline conditions to prepare glycine-β-cyclodextrin (G-β-CD), which is water soluble, has stronger coordinating ability with heavy metals, and is more suitable for treating oil-contaminated soil. The results show that G-β-CD provides better desorption of petroleum hydrocarbons and heavy metals in soils with low organic matter content (1%) and NaNO3 of 0.25 mol/L at 70 g/L G-β-CD under mildly acidic (pH 5–6) conditions. The results indicate that petroleum hydrocarbons and heavy metals were removed simultaneously by means of pretreatment with G-β-CD, and the results can provide a theoretical basis for remediation of petroleum-contaminated soil.


2017 ◽  
Author(s):  
Charlotte Marchand ◽  
Fabio Kaczala ◽  
Yahya Jani ◽  
William Hogland

Underground storage tanks uses for waste cars draining contain many hazardous materials including hydrocarbons. These compounds pose a significant threat to the environment and affect negatively the health of living. Phytoremediation is an environmental friendly method used during the last few decades to eliminating organics pollutants from soil, sediment and water. The remediation capability of alfalfa (Medicago sativa) to treat petroleum-contaminated soil from an old car scrap yard in Nybro, Sweden was further investigated using greenhouse pot-scale experiments. After five months, alfalfa survival capacity and dry biomass were significantly lower in contaminated soil (CS) in comparison to non-contaminated soil (NCS). Only 5% of plants survived in CS and petroleum hydrocarbon C10-C50 content in planted treatment were not statistically lower in comparison to the unplanted treatment. Further studies are in process to evaluate the possible degradation of hydrocarbons using organic amendment


Sign in / Sign up

Export Citation Format

Share Document