scholarly journals Classification of Parkinson's disease using resting-state hemodynamic signals and convolutional neural network

IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S425
Author(s):  
Shin-Young Kang ◽  
Youngwoon Choi ◽  
Seung-Ho Paik ◽  
V. Zephaniah Phillips ◽  
Beop-Min Kim
Diagnostics ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 402
Author(s):  
Sabyasachi Chakraborty ◽  
Satyabrata Aich ◽  
Hee-Cheol Kim

Parkinson’s Disease is a neurodegenerative disease that affects the aging population and is caused by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). With the onset of the disease, the patients suffer from mobility disorders such as tremors, bradykinesia, impairment of posture and balance, etc., and it progressively worsens in the due course of time. Additionally, as there is an exponential growth of the aging population in the world the number of people suffering from Parkinson’s Disease is increasing and it levies a huge economic burden on governments. However, until now no therapeutic method has been discovered for completely eradicating the disease from a person’s body after it’s onset. Therefore, the early detection of Parkinson’s Disease is of paramount importance to tackle the progressive loss of dopaminergic neurons in patients to serve them with a better life. In this study, 3T T1-weighted MRI scans were acquired from the Parkinson’s Progression Markers Initiative (PPMI) database of 406 subjects from baseline visit, where 203 were healthy and 203 were suffering from Parkinson’s Disease. Following data pre-processing, a 3D convolutional neural network (CNN) architecture was developed for learning the intricate patterns in the Magnetic Resonance Imaging (MRI) scans for the detection of Parkinson’s Disease. In the end, it was observed that the developed 3D CNN model performed superiorly by completely aligning with the hypothesis of the study and plotted an overall accuracy of 95.29%, average recall of 0.943, average precision of 0.927, average specificity of 0.9430, f1-score of 0.936, and Receiver Operating Characteristic—Area Under Curve (ROC-AUC) score of 0.98 for both the classes respectively.


2020 ◽  
Vol 10 (3) ◽  
pp. 681-687
Author(s):  
Danyang Ma ◽  
Genke Yang ◽  
Zeya Li ◽  
Haichun Liu ◽  
Changchun Pan ◽  
...  

Schizophrenia is a severe mental disorder that can result in hallucinations, delusions, and extremely disordered thinking and behavior. While electroencephalography (EEG) has been used as an auxiliary tool for diagnostic purposes in several recent studies, all EEG channels are treated homogeneously without addressing the dominance of certain channels. The main purpose of this study is to obtain the weight value of each channel as the quantitative representation of influence of each scalp area on the classification of schizophrenia phases, and then to apply the weight values to improve the accuracy of classification. We propose a new convolutional neural network (CNN) structure based on AlexNet to derive weight values as weight layer and classify the samples better. Our results show that the modified CNN structure achieves better performance in terms of time consumption and classification accuracy compared with the original classifier. Also, the visualization of the weight layer in our model indicates possible correlations between scalp areas and schizophrenia conditions, which may benefit future pathological study.


Sign in / Sign up

Export Citation Format

Share Document